Label-studio-ml-backend 和YOLOV8 YOLO11自动化标注,目标检测,实例分割,图像分类,关键点估计,视频跟踪

这里写目录标题

    • 1.目标检测 Detection
    • 2.实例分割 segment
    • 3.图像分类 classify
    • 4.关键点估计 Keypoint detection
    • 5.视频帧检测 video detect
    • 6.视频帧分类 video classify
    • 7.旋转目标检测 obb detect
    • 8.替换yolo11模型
  • 给我点个赞吧,谢谢了
    • 附录coco80类名称

笔记本 华为matebook14s,windows系统,cpu
1.装Label-studio
2.装Label-studio-ml-backend
3.装ultralytics
4.装docker desktop 并点击启动
在这里插入图片描述

配置好docker-composel.yml文件32 33行
32表示从docker容器里访问容器外的网址,label-studio默认端口8080
33表示label-studio API KEY ,获取方式

  - LABEL_STUDIO_URL=http://host.docker.internal:8080- LABEL_STUDIO_API_KEY=d3ece86209a6a0ca850d468d6c42fa3d7d78be47

点击label-studio头像-》点击Account & settings-》复制access token
在这里插入图片描述
在这里插入图片描述

然后拉取镜像,第一次耗时一个小时左右。记得科学上网呦

cd label_studio_ml\examples\yolo\
docker-compose up --build

在这里插入图片描述

结果如下就表示启动docker成功:
在这里插入图片描述
在label-studio 后台model处导入label-studio-ml-backend默认网址:
http://localhost:9090
在这里插入图片描述
如果连接成功,会有测试通过,显示connected,否则报错
自行修改参考docker-compose.yml第46行

    ports:- "9090:9090"

1.目标检测 Detection

导入示例标注配置:

<View><Image name="image" value="$image"/><RectangleLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1"><Label value="Person" background="red"/><Label value="Car" background="blue"/></RectangleLabels>
</View>

最后成功

在这里插入图片描述

2.实例分割 segment

替换分割模型,
只需要在标签处修改:

<View><Image name="image" value="$image"/><PolygonLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1"><Label value="Car" background="blue"/><Label value="Person" background="red"/></PolygonLabels>
</View>

然后删除目标检测的预测框就可以:
选中图片-》点击左上角 6 Tasks-》Delete Predictions
在这里插入图片描述

然后点击随便一张图片,重新预测结果
在这里插入图片描述

3.图像分类 classify

替换图像分类的标签

<View><Image name="image" value="$image"/><Choices name="choice" toName="image" model_score_threshold="0.25"><Choice value="Airplane" predicted_values="aircraft_carrier,airliner,airship,warplane"/><Choice value="Car" predicted_values="limousine,minivan,jeep,sports_car,passenger_car,police_van"/></Choices>
</View>

结果显示在左下角的分类里。
在这里插入图片描述

4.关键点估计 Keypoint detection

替换标签:

<View><RectangleLabels name="keypoints_bbox" toName="image" model_skip="true"><Label value="person"/></RectangleLabels><KeyPointLabels name="keypoints" toName="image"model_score_threshold="0.75" model_point_threshold="0.5" model_add_bboxes="true" model_point_size="1"model_path="yolov8n-pose.pt"><Label value="nose" predicted_values="person" model_index="0" background="red" /><Label value="left_eye" predicted_values="person" model_index="1" background="yellow" /><Label value="right_eye" predicted_values="person" model_index="2" background="yellow" /><Label value="left_ear" predicted_values="person" model_index="3" background="purple" /><Label value="right_ear" predicted_values="person" model_index="4" background="purple" /><View><Label value="left_shoulder" predicted_values="person" model_index="5" background="green" /><Label value="left_elbow" predicted_values="person" model_index="7" background="green" /><Label value="left_wrist" predicted_values="person" model_index="9" background="green" /><Label value="right_shoulder" predicted_values="person" model_index="6" background="blue" /><Label value="right_elbow" predicted_values="person" model_index="8" background="blue" /><Label value="right_wrist" predicted_values="person" model_index="10" background="blue" /></View><View><Label value="left_hip" predicted_values="person" model_index="11" background="brown" /><Label value="left_knee" predicted_values="person" model_index="13" background="brown" /><Label value="left_ankle" predicted_values="person" model_index="15" background="brown" /><Label value="right_hip" predicted_values="person" model_index="12" background="orange" /><Label value="right_knee" predicted_values="person" model_index="14" background="orange" /><Label value="right_ankle" predicted_values="person" model_index="16" background="orange" /></View></KeyPointLabels><Image name="image" value="$image" />
</View>

展示结果:
在这里插入图片描述

5.视频帧检测 video detect

标签

<View><Video name="video" value="$video"/><VideoRectangle name="box" toName="video" model_tracker="botsort" model_conf="0.25" model_iou="0.7" /><Labels name="label" toName="video"><Label value="Person" background="red"/><Label value="Car" background="blue"/></Labels>
</View>

第一次处理视频会比较长,因为他是完整的预测完才加载;后台可以显示当前处理到多少frame
在这里插入图片描述
展示效果如下:
在这里插入图片描述

6.视频帧分类 video classify

标签:

<View><Video name="video" value="$video"/><TimelineLabels name="label" toName="video" model_trainable="false" model_score_threshold="0.25"><Label value="Ball" predicted_values="soccer_ball" /><Label value="hamster" /></TimelineLabels>
</View>

测试失败
在这里插入图片描述

7.旋转目标检测 obb detect

测试失败

8.替换yolo11模型

下载好然后放到models目录下
在这里插入图片描述
修改
\label-studio-ml-backend\label-studio-ml-backend-master\label_studio_ml\examples\yolo\requirements.txt
把ultralytics更新为
ultralytics~=8.3.20
否则不支持yolo11,

重启docker

docker-compose down
docker-compose up --build

就可以了
记得替换标签时,加入model_path=“yolo11n.pt”
例如目标检测:

<View><Image name="image" value="$image"/><PolygonLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1" model_path="yolo11n.pt"><Label value="Car" background="blue"/><Label value="Person" background="red"/></PolygonLabels>
</View>

在这里插入图片描述

实测下来,
yolo11n.pt
yolo11n-seg.pt
yolo11n-pose.pt
yolo11n-cls.pt
都能用

给我点个赞吧,谢谢了

附录coco80类名称

为了方便大家修改标签信息,我附上coco数据集80类名称,自行参考:

person(人)
bicycle(自行车)
car(轿车)
motorcycle(摩托车)
airplane(飞机)
bus(公共汽车)
train(火车)
truck(卡车)
boat(船)
traffic light(交通灯)
fire hydrant(消防栓)
stop sign(停车标志)
parking meter(停车收费表)
bench(长凳)
bird(鸟)
cat(猫)
dog(狗)
horse(马)
sheep(羊)
cow(牛)
elephant(大象)
bear(熊)
zebra(斑马)
giraffe(长颈鹿)
backpack(背包)
umbrella(雨伞)
handbag(手提包)
tie(领带)
suitcase(手提箱)
frisbee(飞盘)
skis(滑雪板)
snowboard(滑雪单板)
sports ball(体育用球)
kite(风筝)
baseball bat(棒球棒)
baseball glove(棒球手套)
skateboard(滑板)
surfboard(冲浪板)
tennis racket(网球拍)
bottle(瓶子)
wine glass(酒杯)
cup(杯子)
fork(叉子)
knife(刀)
spoon(勺子)
bowl(碗)
banana(香蕉)
apple(苹果)
sandwich(三明治)
orange(橙子)
broccoli(西兰花)
carrot(胡萝卜)
hot dog(热狗)
pizza(披萨)
donut(甜甜圈)
cake(蛋糕)
chair(椅子)
couch(长沙发)
potted plant(盆栽)
bed(床)
dining table(餐桌)
toilet(马桶)
tv(电视)
laptop(笔记本电脑)
mouse(鼠标)
remote(遥控器)
keyboard(键盘)
cell phone(手机)
microwave(微波炉)
oven(烤箱)
toaster(烤面包机)
sink(水槽)
refrigerator(冰箱)
book(书)
clock(时钟)
vase(花瓶)
scissors(剪刀)
teddy bear(泰迪熊)
hair drier(吹风机)
toothbrush(牙刷)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/61185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识JavaScript(第一个课)

一、JavaScript定义 JavaScript 是一种高级的、解释型的编程语言&#xff0c;主要用于网页开发&#xff0c;使网页具有交互性和动态性。 JavaScript是运行在客户端的脚本语言 脚本语言不需要编译、运行过程种直接js解释器逐行来进行解释执行 二、历史背景 JavaScript 最初…

uniapp: 微信小程序包体积超过2M的优化方法(主包从2.7M优化到1.5M以内)

一、问题描述 在使用uniapp进行微信小程序开发时&#xff0c;经常会遇到包体积超过2M而无法上传&#xff1a; 二、解决方案 目前关于微信小程序分包大小有以下限制&#xff1a; 整个小程序所有分包大小不超过 30M&#xff08;服务商代开发的小程序不超过 20M&#xff09; 单个…

STM32 ADC --- 任意单通道采样

STM32 ADC — 单通道采样 文章目录 STM32 ADC --- 单通道采样cubeMX配置代码修改&#xff1a;应用 使用cubeMX生成HAL工程 需求&#xff1a;有多个通道需要进行ADC采样&#xff0c;实现每次采样只采样一个通道&#xff0c;且可以随时采样不同通道的功能。 cubeMX配置 这里我们…

2411rust,编译时自动检查配置

原文 Cargo和编译器团队很高兴地宣布,从Rust1.80(或nightly-2024-05-05)开始,会自动检查每个可访问的#[cfg],看看是否与期望的配置名和值匹配. 这帮助验证crate,是否正确处理不同目标平台或函数的条件编译.它确保在期望和使用设置的配置间保持一致,帮助在开发过程的早期抓住潜…

python读取Oracle库并生成API返回Json格式

一、安装必要的库 首先&#xff0c;确保已经安装了以下库&#xff1a; 有网模式 pip install flask pip install gevent pi install cx_Oracle离线模式&#xff1a; 下载地址&#xff1a;https://pypi.org/simple/flask/ # a. Flask Werkzeug-1.0.1-py2.py3-none-any.whl J…

开发 + 安全:网络安全的协作方法

开发团队和安全团队之间由来已久的紧张关系一直是组织内部摩擦的根源。开发人员优先考虑速度和效率&#xff0c;旨在通过快节奏、迭代的开发周期快速交付功能和产品并高效前进。另一方面&#xff0c;安全团队努力平衡风险和创新&#xff0c;但必须专注于使用护栏保护敏感数据和…

计算机视觉(CV):让机器看懂世界

引言 计算机视觉&#xff08;Computer Vision, CV&#xff09;是人工智能的重要领域&#xff0c;致力于让机器能够“看懂”世界。CV技术广泛应用于自动驾驶、医疗影像、安防监控和娱乐领域&#xff0c;正在改变我们的生活方式。 本文将从基本概念、技术方法、应用场景和发展方向…

SpringAOP模拟实现

文章目录 1_底层切点、通知、切面2_切点匹配3_从 Aspect 到 Advisor1_代理创建器2_代理创建时机3_Before 对应的低级通知 4_静态通知调用1_通知调用过程2_模拟 MethodInvocation 5_动态通知调用 1_底层切点、通知、切面 注意点&#xff1a; 底层的切点实现底层的通知实现底层的…

R语言基础入门详解

文章目录 R语言基础入门详解一、引言二、R语言环境搭建1、安装R和RStudio1.1、步骤1.2、获取工作目录 三、R语言基础2、语法基础2.1、赋值操作2.2、注释 3、数据类型与结构3.1、向量3.2、矩阵 4、基本操作4.1、数据读取4.2、数据可视化 四、R语言使用示例4.1、统计分析示例4.2、…

Three.js PBR材质

本文将详细介绍Three.js中的PBR&#xff08;Physically Based Rendering&#xff09;材质&#xff0c;包括PBR的基本概念、适用场景、PBR材质的构建以及一些高级应用技巧。 1. PBR&#xff08;Physically Based Rendering&#xff09;基本概念 PBR&#xff0c;即Physically B…

头歌——VLAN基本配置第一关

任务描述 本关任务&#xff1a;实现跨交换机的VLAN。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.VLAN的定义&#xff0c;2.VLAN的类型。 实验步骤 &#xff08;1&#xff09;新建Packet Tracer拓扑图&#xff1b; &#xff08;2&#xff09;划分VLAN&…

CentOS使用中遇到的问题及解决方法

一、CentOS 7网络配置&#xff08;安装后无法联网问题&#xff09; 现象说明 在安装CentOS系统后&#xff0c;有可能出现无法联网的问题&#xff0c;虚拟机中的网络配置并没有问题&#xff0c;而系统却无法联网,也ping不通。 原因描述 CentOS默认开机不启动网络&#xff0c;因…

【AI+教育】一些记录@2024.11.16

《万字长文&#xff0c;探讨关于ChatGPT的五个最核心问题》 万字长文&#xff0c;探讨关于ChatGPT的五个最核心问题关于 ChatGPT 铺天盖地的信息让人无所适从。本文则试图提炼出五个关键问题&#xff1a;如何理解这次范式突破&#xff0c;未来能达到的技术天花板&#xff0c;行…

docker minio修改时区问题记录

记录如下 [rootiv-ydi8je5nggxjd1u4r4h6 ~]# docker run -d --restart always -p 9011:9000 -p 9012:9001 --name minio1 -v /opt/gisminio/data:/data -e "MINIO_ROOT_USERadmin" -e "MINIO_ROOT_PASSWORDcxxx" -e "TZAsia/Shanghai&qu…

CEF编译指南2024 Windows篇-CEF简介(一)

1. 引言 在现代桌面应用程序开发中&#xff0c;Web技术的应用越来越广泛。许多开发者希望能够在传统桌面应用中嵌入Web内容&#xff0c;既保留了原生应用的性能优势&#xff0c;又能享受Web开发的便利性。CEF&#xff08;Chromium Embedded Framework&#xff09;作为一个基于…

机器翻译-基础与模型

一、机器翻译发展历程 基于规则的-->基于实例的-->基于统计方法的-->基于神经网络的 传统统计机器翻译把词序列看作离散空间里的由多个特征函数描述的点&#xff0c;类似 于 n-gram 语言模型&#xff0c;这类模型对数据稀疏问题非常敏感。神经机器翻译把文字序列表示…

计算机网络——路由选择算法

路由算法 路由的计算都是以子网为单位计算的——找到从原子网到目标子网的路径 链路状态算法 序号——&#xff08;源路由器&#xff0c;序号&#xff09;——如果发现这个序号重复或者老了——就不扩散 先测量——再泛洪获得路由 路由转发情况 若S——>W是21则不更改——…

Web开发:ORM框架之使用Freesql的DbFrist封装常见功能

一、调用 public class Program {static string connectionstring "连接字符串&#xff08;数据库名&#xff09;";static void Main(string[] args){//1.连接数据库var freesql new FreeSqlBuilder().UseConnectionString(DataType.SqlServer, connectionstring…

【金融风控项目-07】:业务规则挖掘案例

文章目录 1.规则挖掘简介2 规则挖掘案例2.1 案例背景2.2 规则挖掘流程2.3 特征衍生2.4 训练决策树模型2.5 利用结果划分分组 1.规则挖掘简介 两种常见的风险规避手段&#xff1a; AI模型规则 如何使用规则进行风控 **使用一系列逻辑判断(以往从职人员的经验)**对客户群体进行区…

实时监控,智能分析:输电线路多目视频监控装置提升运维效率

在快速变迁的现代社会中&#xff0c;安全监控技术已成为各行各业安全管理体系的核心组成部分。无论是工厂生产线的安全保障&#xff0c;城市治安的维护&#xff0c;还是偏远区域电力巡检的顺利进行&#xff0c;都离不开高效且智能的监控解决方案。 在高压输电线路的监测领域&am…