使用python-Spark使用的场景案例具体代码分析

使用场景

1. 数据批处理

• 日志分析:互联网公司每天会产生海量的服务器日志,如访问日志、应用程序日志等。Spark可以高效地读取这些日志文件,对数据进行清洗(例如去除无效记录、解析日志格式)、转换(例如提取关键信息如用户ID、访问时间、访问页面等)和分析(例如统计页面访问量、用户访问路径等)。

• 数据仓库ETL(Extract,Transform,Load):在构建数据仓库时,需要从各种数据源(如关系型数据库、文件系统等)提取数据,进行清洗、转换和加载到数据仓库中。Spark可以处理大规模的数据,并且通过其丰富的转换操作(如对数据进行聚合、关联等),能够很好地完成ETL流程。

2. 机器学习与数据挖掘

• 推荐系统:基于用户的行为数据(如购买记录、浏览历史等)和物品的属性数据,Spark MLlib(机器学习库)可以用于构建推荐模型。例如,使用协同过滤算法来发现用户的兴趣偏好,为用户推荐可能感兴趣的商品、电影、音乐等。

• 聚类分析:对于大规模的数据集,如客户细分场景下的用户特征数据,Spark可以应用聚类算法(如K - Means)将相似的用户或数据点聚集在一起,帮助企业更好地理解客户群体的结构,进行精准营销等活动。

3. 实时数据处理

• 实时监控与预警:在金融领域,Spark Streaming可以实时处理股票交易数据,计算关键指标(如实时股价波动、成交量变化等),当指标超出设定的阈值时,及时发出预警信号。

• 实时交通数据分析:通过接入交通传感器(如摄像头、测速仪等)的实时数据,Spark可以对交通流量、车速、拥堵情况等进行实时分析,为交通管理部门提供决策支持,如动态调整交通信号灯时间。

Spark使用场景的详细代码案例

1. 数据批处理 - 日志分析

from pyspark.sql import SparkSession
from pyspark.sql.functions import split, count, col# 创建SparkSession
spark = SparkSession.builder.appName("LogAnalysis").getOrCreate()# 假设日志数据格式为每行: [IP地址, 时间戳, 请求方法, 请求路径, 协议, 状态码, 用户代理]
# 这里模拟一些日志数据
log_data = [("192.168.1.1", "2024-11-08 10:00:00", "GET", "/index.html", "HTTP/1.1", "200", "Mozilla/5.0"),("192.168.1.2", "2024-11-08 10:05:00", "GET", "/about.html", "HTTP/1.1", "200", "Chrome/100.0"),("192.168.1.1", "2024-11-08 10:10:00", "POST", "/login", "HTTP/1.1", "200", "Mozilla/5.0")
]columns = ["ip", "timestamp", "method", "path", "protocol", "status", "user_agent"]
df = spark.createDataFrame(log_data, columns)# 统计每个页面的访问次数
page_views = df.groupBy("path").agg(count("*").alias("views"))
page_views.show()# 统计每个IP的请求次数
ip_requests = df.groupBy("ip").agg(count("*").alias("requests"))
ip_requests.show()# 找出访问次数最多的前5个页面
top_pages = page_views.orderBy(col("views").desc()).limit(5)
top_pages.show()# 关闭SparkSession
spark.stop()

2. 数据批处理 - 数据仓库 ETL(以从CSV文件提取数据并加载到新表为例)

from pyspark.sql import SparkSession
import os# 创建SparkSession
spark = SparkSession.builder.appName("ETLExample").getOrCreate()# 假设源数据是一个CSV文件,路径为以下(这里可以替换为真实路径)
csv_path = "/path/to/source/csv/file.csv"
if not os.path.exists(csv_path):raise FileNotFoundError(f"CSV file not found at {csv_path}")# 读取CSV文件,假设CSV文件有列名:id, name, age
df = spark.read.csv(csv_path, header=True, inferSchema=True)# 进行一些数据转换,比如将年龄加1(这里只是示例,可以根据实际需求调整)
df = df.withColumn("new_age", df.age + 1)# 假设要将数据加载到一个新的Parquet格式文件中,路径为以下(可替换)
output_path = "/path/to/output/parquet/file.parquet"
df.write.mode("overwrite").parquet(output_path)# 关闭SparkSession
spark.stop()

3. 机器学习与数据挖掘 - 推荐系统(基于用户 - 物品评分的协同过滤)

from pyspark.sql import SparkSession
from pyspark.ml.recommendation import ALS
from pyspark.ml.evaluation import RegressionEvaluator# 创建SparkSession
spark = SparkSession.builder.appName("RecommendationSystem").getOrCreate()# 模拟用户 - 物品评分数据
data = [(1, 1, 5.0),(1, 2, 4.0),(2, 1, 3.0),(2, 2, 2.0),(2, 3, 4.0),(3, 1, 2.0),(3, 3, 5.0),(4, 2, 3.0),(4, 3, 4.0),
]columns = ["user_id", "item_id", "rating"]# 创建DataFrame
df = spark.createDataFrame(data, columns)# 划分训练集和测试集
(train_df, test_df) = df.randomSplit([0.8, 0.2])# 创建ALS模型
als = ALS(userCol="user_id", itemCol="item_id", ratingCol="rating", coldStartStrategy="drop")# 训练模型
model = als.fit(train_df)# 对测试集进行预测
predictions = model.transform(test_df)# 评估模型
evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", predictionCol="prediction")
rmse = evaluator.evaluate(predictions)
print(f"Root Mean Squared Error = {rmse}")# 为用户生成推荐
user_recs = model.recommendForAllUsers(5)
user_recs.show(truncate=False)# 关闭SparkSession
spark.stop()

4. 机器学习与数据挖掘 - 聚类分析(K - Means 聚类)

from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans# 创建SparkSession
spark = SparkSession.builder.appName("KMeansClustering").getOrCreate()# 模拟客户特征数据,这里假设每个客户有两个特征:年龄和收入
data = [(25, 50000),(30, 60000),(35, 70000),(40, 80000),(28, 55000),(32, 65000),
]columns = ["age", "income"]
df = spark.createDataFrame(data, columns)# 将特征列组合成一个向量列
assembler = VectorAssembler(inputCols=columns, outputCol="features")
df = assembler.transform(df)# 创建K - Means模型,设置聚类数为3
kmeans = KMeans(k=3, seed=1)
model = kmeans.fit(df)# 预测聚类结果
predictions = model.transform(df)
predictions.show()# 关闭SparkSession
spark.stop()

5. 实时数据处理 - 实时监控与预警(以简单的股票价格监控为例,使用Spark Streaming和Socket模拟实时数据)

from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext# 创建SparkSession和StreamingContext,设置批处理间隔为5秒
spark = SparkSession.builder.appName("StockMonitoring").getOrCreate()
ssc = StreamingContext(spark.sparkContext, 5)# 这里使用Socket模拟接收实时股票价格数据,实际中可能是从消息队列等接收
# 假设数据格式为: 股票代码,价格
lines = ssc.socketTextStream("localhost", 9999)# 解析数据
data = lines.map(lambda line: line.split(","))# 将数据转换为DataFrame格式(这里只是简单示例,可能需要更多处理)
from pyspark.sql.types import StructType, StructField, StringType, DoubleType
schema = StructType([StructField("symbol", StringType(), True),StructField("price", DoubleType(), True)
])
df = data.toDF(schema)# 假设要监控某只股票(这里以股票代码为 'AAPL' 为例),当价格超过150时预警
apple_stock = df.filter(df.symbol == "AAPL")
alert = apple_stock.filter(df.price > 150).map(lambda row: f"Alert: {row.symbol} price {row.price} is high!")alert.pprint()# 启动 StreamingContext
ssc.start()
# 等待停止
ssc.awaitTermination()
6. 实时数据处理 - 实时交通数据分析(使用Spark Streaming和Kafka,假设已经有Kafka环境和交通数据主题)
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json# 创建SparkSession和StreamingContext,设置批处理间隔为10秒
spark = SparkSession.builder.appName("TrafficAnalysis").getOrCreate()
ssc = StreamingContext(spark.sparkContext, 10)# Kafka参数,这里需要替换为真实的Kafka服务器地址和交通数据主题
kafkaParams = {"metadata.broker.list": "localhost:9092"}
topic = "traffic_data"# 从Kafka读取实时交通数据
kafkaStream = KafkaUtils.createDirectStream(ssc, [topic], kafkaParams)# 解析JSON格式的交通数据,假设数据包含车速、车流量等信息
def parse_traffic_data(json_str):try:data = json.loads(json_str)return (data["location"], data["speed"], data["volume"])except Exception as e:print(f"Error parsing data: {e}")return Noneparsed_data = kafkaStream.map(lambda x: parse_traffic_data(x[1]))
valid_data = parsed_data.filter(lambda x: x is not None)# 将数据转换为DataFrame格式(这里只是简单示例,可能需要更多处理)
from pyspark.sql.types import StructType, StructField, StringType, DoubleType
schema = StructType([StructField("location", StringType(), True),StructField("speed", DoubleType(), True),StructField("volume", DoubleType(), True)
])
df = valid_data.toDF(schema)# 计算每个区域的平均车速和车流量
average_speed_volume = df.groupBy("location").agg({"speed": "avg", "volume": "sum"})
average_speed_volume.pprint()# 启动 StreamingContext
ssc.start()
# 等待停止
ssc.awaitTermination()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60977.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AXI DMA IP BUG踩坑记录

1. 问题描述 在突发的过程中总是一旦使用XAxiDma_SimpleTransfer函数就会出现AXI STREAM信号的READY信号先拉高4个数据(32位)的时钟后会迅速拉低,换句话说就是一旦PS端发起了XAxiDma_SimpleTransfer,AXI总线的READY信号就会拉高四个节拍,这样就会导致传输的数据出现问题。…

Vue2教程001:初识Vue

文章目录 1、初识Vue1.1、Vue2前言1.2、创建Vue实例1.3、插值表达式1.4 Vue响应式特性 1、初识Vue 1.1、Vue2前言 Vue是什么? 概念:Vue是一个用于构建用户界面的渐进式框架。 Vue的两种使用方式: Vue核心包开发 场景:局部模块…

【jvm】HotSpot中方法区的演进

目录 1. 说明2. JDK1.6及以前3. JDK1.74. JDK1.8及以后 1. 说明 1.在HotSpot虚拟机中,方法区(Method Area)的演进是一个重要的内存管理优化过程。2.从JDK1.6到JDK1.8,HotSpot虚拟机中的方法区经历了从永久代到元空间的重大变化。…

API 数据处理与 SQL 批量更新技巧:CASE 语句优化操作指南

前言 在现代应用程序开发中,数据处理和数据库操作是不可或缺的一部分。特别是在处理大量数据时,如何高效地更新数据库记录成为了关键问题。本文将对比两种常见的数据库更新方法:一种是使用 CASE 语句进行批量更新,另一种是通过循…

高级java每日一道面试题-2024年11月10日-框架篇[SpringBoot篇]-你对SpringBoot了解多少?

如果有遗漏,评论区告诉我进行补充 面试官: 你对SpringBoot了解多少? 我回答: 在Java高级面试中,SpringBoot是一个经常被提及的话题。以下是对SpringBoot的详细解析: SpringBoot概述 SpringBoot是Spring开源组织下的子项目,是Spring组件…

Linux dpkg命令详解

一、简介 dpkg 是基于 Debian 发行版 Linux 系统的低级包管理工具&#xff0c;可以手动安装、配置、移除 .deb 包&#xff0c;与 apt 命令不同的是&#xff0c;dpkg 不会自动处理包之间的依赖关系。 二、常用选项 安装包 sudo dpkg -i <package_name>.deb手动处理包依…

vscode vite+vue3项目启动调试

1、经常我们在普通的项目中&#xff0c;如果算法并不复杂&#xff0c;那么基本上console.log就可以搞定&#xff0c;当然也可以直接alert&#xff0c;打包的时候如果不去掉&#xff0c;还会在发版中上接弹出&#xff0c;给你个惊喜。 2、碰到了有些算法过程比较复杂的情况下&a…

如何给openshift 单节点集群配置hugepage

目前我有一台arm服务器, 是配置的单节点集群, 这个节点为是master, 也是worker. 理论上我应该用worker 标签给node 配置hugepage. 所以使用了以下方法: cat << EOF > hugepageconfig.yaml apiVersion: machineconfiguration.openshift.io/v1 kind: MachineCo…

Jdbc学习笔记(三)--PreparedStatement对象、sql攻击(安全问题)

目录 &#xff08;一&#xff09;使用PreparedStatement对象的原因&#xff1a; 使用Statement对象编写sql语句会遇到的问题 ​编辑 &#xff08;二&#xff09;sql攻击 1.什么是sql攻击 2.演示sql攻击 &#xff08;三&#xff09;防止SQL攻击 1.PreparedStatement是什么 …

java导出pdf

引入包 <properties><itext.version>8.0.5</itext.version></properties><dependencies><dependency><groupId>com.itextpdf</groupId><artifactId>itext-core</artifactId><version>${itext.version}</…

C/C++基础知识复习(23)

) 什么是 C 内联函数&#xff1f;它的作用是什么&#xff1f; C 内联函数&#xff08;inline function&#xff09; 是一种通过编译器优化的特殊函数。内联函数的主要作用是减少函数调用的开销&#xff0c;使得程序执行更加高效&#xff0c;尤其是对于那些频繁调用的函数。 当…

表单自动化填写-JavaScript脚本

一、场景 在日常工作、生活中常常会遇到需要填写、提交web表单的场景&#xff0c;往往涉及到了大量机械、重复的工作。作为程序员&#xff0c;我们崇尚消除重复、实现流程自动化、合理偷懒。 通过浏览器的控制台运行JavaScript脚本&#xff0c;可以简单的实现对web表单的填写…

后端分层解耦

引入 在上篇所举的例子中&#xff0c;我们将所有的代码均放在HelloControl方法之中&#xff0c;这样会导致代码的复用性、可读性较差&#xff0c;难以维护。因此我们需 三层架构 在之前的代码中&#xff0c;代码大体可以分为三部分&#xff1a;数据访问、数据逻辑处理、响应数…

97.【C语言】数据结构之栈

目录 栈 1.基本概念 2.提炼要点 3.概念选择题 4.栈的实现 栈初始化函数 入栈函数 出栈函数和栈顶函数 栈顶函数 栈销毁函数 栈 基本概念参见王爽老师的《汇编语言 第四版》第56和57页 节选一部分 1.基本概念 注意:这里提到的数据结构中的栈有别于操作系统的栈,后者是…

初识算法 · 模拟(1)

目录 前言&#xff1a; 替换所有的问号 题目解析 算法原理 算法编写 提莫攻击 题目解析 算法原理 算法编写 外观数列 题目解析 算法原理 算法编写 前言&#xff1a; ​本文的主题是模拟&#xff0c;通过三道题目讲解&#xff0c;一道是提莫攻击&#xff0c;一道是…

Controller Baseband commands速览

目录 一、设备连接与通信控制类&#xff08;34条&#xff09; 1.1. 连接参数相关 1.1.1. 连接建立超时设置 1.1.2. 链路监督超时设置 1.1.3. Page操作超时设置 1.1.4. 扩展Page操作超时设置 1.1.5. 安全连接主机支持 1.2. 扫描操作相关 1.2.1. 扫描启用与禁用 1.2.2.…

【数值分析】高斯-赛德尔方法、规范化幂法、原点移位法

【数值分析】高斯-赛德尔方法、规范化幂法、原点移位法 题目 要求 代码实现过程不能调用任何库函数自带的“线性 方程组求解、特征值求解库函数” 利用高斯-赛德尔方法求解上述线性方程组 使用Python编程求解矩阵A与列向量b import numpy as np import sympy as spdef crea…

【CUDA】了解GPU架构

目录 一、初步认识 二、Fermi架构 三、Kepler 架构 3.1 动态并行 3.2 Hyper-Q 一、初步认识 SM&#xff08;Streaming Multiprocessors&#xff09;是GPU架构中非常重要的部分&#xff0c;GPU硬件的并行性就是由SM决定的。以Fermi架构为例&#xff0c;其包含以下主要组成…

64位程序调用32位dll解决方案

最近在做64位代码移植&#xff0c;发现很多老代码使用到了第三方的32位dll;而且这些第三方32位dll库已经年代久远&#xff0c;原开发商已不再了&#xff1b;所以急切的需要在64位主程序 中使用老的32位dll;查询很多解决方案 发现目前只有使用com 进程外组件的方法可以解决此问题…

【HOT100第五天】搜索二维矩阵 II,相交链表,反转链表,回文链表

240.搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 先动手写写最简单方法&#xff0c;二重循环。 class Solution { public:bool searchMa…