从零开始的 Hugging Face 项目:我的首个在线 SQL 查询工具之旅20241111

从零开始的 Hugging Face 项目:我的首个在线 SQL 查询工具之旅

作为一名 AI 初学者,我最近完成了一个意义非凡的项目:在 Hugging Face Spaces 上构建了一个简单却实用的在线 SQL 查询工具。这个项目不仅让我了解了 Hugging Face 平台的核心功能,还让我初次尝试了将 Pandas 和 SQL 结合进行数据模拟的技术实践。本文将分享我的项目开发经历、技术实现细节以及个人的心得体会,希望能为更多初学者提供灵感和参考。

一、项目背景:从自然语言到 SQL 查询

AI 领域的自然语言处理(NLP)近年来取得了飞速发展,其中一个重要的应用场景就是自然语言转 SQL(NL2SQL)。这一技术可以让非技术用户通过自然语言与数据库进行交互,比如用一句话查询商品库存或统计销售额。

但对于刚接触 Hugging Face 的初学者来说,直接部署一个高效的 NL2SQL 工具可能过于复杂。因此,我的目标是搭建一个简单的在线工具,用 Pandas 模拟数据库,结合 SQL 查询功能,为后续的复杂项目奠定基础。

二、核心技术与平台选择

1. 为什么选择 Hugging Face Spaces

  • 简单易用:Hugging Face Spaces 提供了免费运行环境,支持 Gradio 和 Streamlit 等快速开发工具。
  • 在线共享:生成公共链接后,其他人无需安装任何依赖,只需访问链接即可体验应用。
  • 初学者友好:适合小型项目的部署和快速测试。

2. Pandas 与 SQL 的结合

为了避免公开真实数据库带来的安全问题,我决定用 Pandas 模拟数据库表,并通过 pandasql 库提供 SQL 查询功能。这种方法轻量化且灵活,适合初学者快速上手。

三、技术实现:从数据模拟到在线工具

以下是项目实现的关键步骤和技术细节:

1. 数据准备:模拟数据库表

我使用 Pandas 创建了四个模拟表:products、orders、customers 和 order_items。这些表覆盖了常见的数据类型和关系,比如商品信息、订单详情和客户数据。

import pandas as pd#模拟 products 表
products = pd.DataFrame({"product_id": [1, 2, 3, 4, 5],"name": ["iPhone 14", "Galaxy S22", "Sony WH-1000XM5", "MacBook Pro", "Echo Dot"],"category": ["Electronics", "Electronics", "Audio", "Computers", "Smart Home"],"price": [799.99, 699.99, 399.99, 1999.99, 49.99],"stock": [50, 40, 30, 20, 70]
})

2. SQL 查询:结合 PandasSQL

借助 pandasql 库,可以对 Pandas 数据帧执行 SQL 查询。例如,以下代码查询价格大于 500 的商品:

from pandasql import sqldfquery = "SELECT name, price FROM products WHERE price > 500;"
result = sqldf(query, {"products": products})
print(result)

3. 构建在线工具:Gradio 与 Hugging Face Spaces

Gradio 是一个强大的 Python 库,用于快速构建交互式用户界面。我用 Gradio 将 SQL 查询功能封装成一个简单的 Web 界面:

import gradio as grdef query_to_sql(sql_query):try:result = sqldf(sql_query, {"products": products})return result.to_string(index=False)except Exception as e:return f"Error: {str(e)}"interface = gr.Interface(fn=query_to_sql,inputs="text",outputs="text",title="SQL Query Simulator",description="输入 SQL 查询语句,模拟查询结果。"
)
interface.launch()

4.完整app.py

import gradio as gr
import pandas as pd
from pandasql import sqldf# 模拟数据库表
products = pd.DataFrame({"product_id": [1, 2, 3, 4, 5],"name": ["iPhone 14", "Galaxy S22", "Sony WH-1000XM5", "MacBook Pro", "Echo Dot"],"category": ["Electronics", "Electronics", "Audio", "Computers", "Smart Home"],"price": [799.99, 699.99, 399.99, 1999.99, 49.99],"stock": [50, 40, 30, 20, 70]
})orders = pd.DataFrame({"order_id": [1, 2, 3],"order_number": ["ORD001", "ORD002", "ORD003"],"customer_id": [1, 2, 3],"total_amount": [1599.98, 699.99, 399.99],"status": ["PAID", "PAID", "PENDING"]
})customers = pd.DataFrame({"customer_id": [1, 2, 3],"name": ["Alice", "Bob", "Charlie"],"email": ["alice@example.com", "bob@example.com", "charlie@example.com"],"phone": ["1234567890", "2345678901", "3456789012"]
})order_items = pd.DataFrame({"order_item_id": [1, 2, 3],"order_id": [1, 2, 3],"product_id": [1, 2, 3],"quantity": [2, 1, 1],"subtotal": [1599.98, 699.99, 399.99]
})# 定义查询函数
def query_to_sql(sql_query):try:# 将 Pandas 数据帧作为 SQL 查询的上下文context = {"products": products,"orders": orders,"customers": customers,"order_items": order_items}result = sqldf(sql_query, context)return result.to_string(index=False)  # 返回查询结果except Exception as e:return f"Error: {str(e)}"# 创建 Gradio 界面
interface = gr.Interface(fn=query_to_sql,inputs="text",outputs="text",title="SQL Query Simulator",description="输入 SQL 查询语句,模拟查询结果。"
)# 启动应用
interface.launch()

四、部署与调试:从本地到云端

1. 创建 Hugging Face Space

在 Hugging Face 平台创建一个新的 Space,选择 Gradio 作为框架,并上传以下文件:
• app.py:主程序代码。
• requirements.txt:依赖列表(如 pandas、pandasql、gradio)。

2. 调试常见问题

  • 依赖未安装:确保 requirements.txt 列出了所有依赖项。
  • 表不存在错误:明确将 Pandas 数据帧作为 SQL 查询上下文传递。

3. 成功部署

部署完成后,访问生成的公共链接,输入如下查询验证工具是否正常运行:

SELECT name, price FROM products WHERE price > 500;
预期输出:name    priceiPhone 14   799.99Galaxy S22   699.99
MacBook Pro 1999.99

五、项目心得:技术与思考的结合

1. 从问题中学习

在项目开发中,我遇到了多次错误,比如表不存在或依赖冲突。但每次调试都是深入理解技术的机会,让我更熟悉 Pandas 和 Hugging Face 平台的工作原理。

2. 初学者的适用场景

对于和我一样刚接触 AI 的初学者,这种结合 Pandas 和 SQL 的轻量级实现,不仅是 NL2SQL 的一个入门实践,还为后续部署更复杂的模型(如 Hugging Face 的 text-to-sql 模型)奠定了基础。

3. 技术之外的收获

这个项目不仅让我掌握了技术,还让我体验到将工具分享给同学时的那种成就感和满足感。

六、未来展望:从简单到复杂的进阶之路

1. 集成 Hugging Face 模型:

下一步,我计划引入 Hugging Face 的 text-to-sql 模型,将自然语言转 SQL 功能与现有系统结合。

2. 支持复杂查询:

增强查询功能,例如支持聚合、分组或多表联结。

3. 用户体验优化:

提供更友好的用户界面,支持结果导出和样例查询。

结语

这次项目是我在 Hugging Face 平台上的起点,也是我 AI 旅程的一个里程碑。从零开始构建一个可用的在线工具,这种成就感让我对未来充满期待。希望我的分享能为更多初学者带来启发,一起探索 AI 世界的无限可能。

让我们在技术的旅途中共同成长! 😊欢迎评论与分享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows,虚拟机Ubuntu和开发板三者之间的NFS服务器搭建

Windows,虚拟机Ubuntu和开发板三者之间的NFS服务器搭建 (1)虚拟机 ubuntu 要使用桥接模式,不能使用其他模式 (2)通过网线将PC和开发板网口直连:这样的连接,开发板是无法连接外网的 (3&#xff…

C语言第十一周课——函数的调用

目录 一、冒泡法排序 二、二分法查找 一、冒泡法排序 通过调用函数来实现冒泡法 #include<stdio.h> // 定义数组长度 #define SIZE 3 void bubbleSort(int arr[], int n);int main() {int arr[SIZE];int i;// 从控制台输入数字到数组printf("请输入%d个整数&#x…

C# 有趣的小程序—桌面精灵详细讲解

C# 桌面精灵详细讲解 最近写了一个简化版桌面精灵&#xff0c;效果如图所示&#xff0c;可以实现切换动画&#xff0c;说话、鼠标拖动&#xff0c;等功能。具体如何做&#xff0c;我发布了一个资源里面包含ppt详解、源代码以及动画素材。放心吧&#xff0c;免费的&#xff0c;…

【系统架构设计师】真题论文: 论软件可靠性设计与应用(包括解题思路和素材)

更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2009年 试题4)解题思路论文素材参考软件可靠性概念软件可靠性的重要意义影响软件可靠性的因素软件可靠性设计方法真题题目(2009年 试题4) 目前在企业中,以软件为核心的产品得到了广泛的应用。随着系…

如何开发查找附近地点的微信小程序

我开发的是找附近卫生间的小程序。 在现代城市生活中&#xff0c;找到一个干净、方便的公共卫生间有时可能是一个挑战。为了解决这个问题&#xff0c;我们可以开发一款微信小程序&#xff0c;帮助用户快速找到附近的卫生间。本文将介绍如何开发这样一款小程序&#xff0c;包…

视觉SLAM数学基础

本文系统梳理从相机成像模型&#xff0c;通过不同图像帧之间的构造几何约束求解位姿变换&#xff0c;再根据位姿变换和匹配点还原三维坐标的过程&#xff0c;可以作为基于特征点法的视觉SLAM的数学基础。 1、相机成像模型 1.1、针孔相机模型 实际相机的成像方式通常很复杂&a…

19.(开发工具篇mysql库)mysql锁表问题解决

1&#xff1a;查看锁表情况 show OPEN TABLES where In_use > 0; 2&#xff1a;查看所有进程命令 show processlist 3&#xff1a;杀对应进程&#xff08;通过host&#xff0c;db找对应的ID&#xff09; kill 57303

计算机新手练级攻略——如何搜索问题

目录 计算机学生新手练级攻略——如何搜索问题1.明确搜索意图2.使用精确关键词3.使用专业引擎搜索4.利用好技术社区1. Stack Overflow2. GitHub3. IEEE Xplore4. DBLP 5.使用代码搜索工具1. GitHub 代码搜索2. Stack Overflow 代码搜索3. Papers with Code4. IEEE Xplore 6.查阅…

51c自动驾驶~合集10

我自己的原文哦~ https://blog.51cto.com/whaosoft/11638131 #端到端任务 说起端到端&#xff0c;每个从业者可能都觉得会是下一代自动驾驶量产方案绕不开的点&#xff01;特斯拉率先吹响了方案更新的号角&#xff0c;无论是完全端到端&#xff0c;还是专注于planner的模型&a…

““和“*“:身怀绝技的双飞客

"&"和"*"是C语言里面的两个斜杠青年&#xff0c;不同的形式具有不同的作用。 一、"&"运算符 1&#xff0e;按位与运算符&#xff08;Bitwise AND operator&#xff09; 对两个操作数的每一位进行逐位比较&#xff0c;相应位都为1时&a…

大模型日报|6 篇必读的大模型论文

1.华为推出科学智能体 Agent K v1.0&#xff0c;已达 Kaggle 大师水平 在这项工作中&#xff0c;来自华为诺亚方舟实验室和伦敦大学学院的研究团队提出了 Agent K v1.0&#xff0c;它是一个端到端自主数据科学智能体&#xff08;agent&#xff09;&#xff0c;旨在对各种数据科…

Redis在docker中的主从,哨兵配置

主从配置 docker 中redis服务启动&#xff0c;将配置文件和数据挂载到 redisData中,记得先创建好redis.conf docker run -p 6379:6379 \--name redis \-v /root/redisData/data:/data \-v /root/redisData/conf/redis.conf:/etc/redis/redis.conf \-d redis redis-server /et…

游戏中的设计模式及杂项

概述 如果要做以下游戏功能会用到哪些设计模式。比如创建一个人物角色&#xff0c;这个角色可以装备刀&#xff0c;然后角色可以用刀砍怪物&#xff0c;造成流血。 对于这个游戏功能&#xff0c;可以使用以下设计模式&#xff1a; 工厂模式&#xff08;Factory Pattern&#x…

MySQL核心业务大表归档过程

记录一下2年前的MySQL大表的归档&#xff0c;当时刚到公司&#xff0c;发现MySQL的业务核心库&#xff0c;超过亿条的有7张表&#xff0c;最大的表有9亿多条&#xff0c;有37张表超过5百万条&#xff0c;部分表行数如下&#xff1a; 在测试的MySQL环境 &#xff1a; pt-archiv…

cache(二)直接缓存映射

在知乎发现一份不错得学习资料 请教CPU的cache中关于line,block,index等的理解&#xff1f; PPT 地址 https%3A//cs.slu.edu/%7Efritts/CSCI224_S15/schedule/chap6-cache-memory.pptx 课程主页 https://cs.slu.edu/~fritts/CSCI224_S15/schedule/ 0. 缓存定义 这张图展示了缓…

探索Apache Spark:现代数据处理的闪电利剑

在大数据技术的快速发展中&#xff0c;Apache Spark凭借其高效的内存计算和友好的编程模型&#xff0c;成为了现代数据处理领域中的一颗耀眼明星。Spark的出现填补了批处理和实时处理之间的空白&#xff0c;使得数据分析任务能够以前所未有的速度和效率得以执行。本文将深入剖析…

光流法(Optical Flow)

一、简介 光流法&#xff08;Optical Flow&#xff09;是一种用于检测图像序列中像素运动的计算机视觉技术。其基于以下假设&#xff1a; 1.亮度恒定性假设&#xff1a;物体在运动过程中&#xff0c;其像素值在不同帧中保持不变。 2.空间和时间上的连续性&#xff1a;相邻像素之…

软考中级-软件设计师 Python篇

文章目录 Python 基础语法Python 数据结构函数与模块面向对象编程常用算法实现文件操作异常处理常用库 Python 基础语法 变量与数据类型&#xff1a;Python支持多种数据类型&#xff0c;包括整数 (int)、浮点数 (float)、字符串 (str)、布尔值 (bool) 和复数 (complex)。 x …

打造自己的RAG解析大模型:(可商用)智能文档服务上线部署

通用版面分析介绍 版面解析是一种将文档图像转化为机器可读数据格式的技术&#xff0c;广泛应用于文档管理和信息提取等领域。通过结合OCR、图像处理和机器学习&#xff0c;版面解析能够识别文档中的文本块、图片、表格等版面元素&#xff0c;最终生成结构化数据&#xff0c;大…

【MySQL】MySQL基础知识复习(下)

前言 上一篇博客介绍了MySQL的库操作&#xff0c;表操作以及CRUD。 【MySQL】MySQL基础知识复习&#xff08;上&#xff09;-CSDN博客 本篇将进一步介绍CRUD操作&#xff0c;尤其是查找操作 目录 一.数据库约束 1.约束类型 1.1NULL约束 1.2UNIQUE&#xff1a;唯一约束 …