ST-GCN模型实现花样滑冰动作分类

项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。

《------往期经典推荐------》

项目名称
1.【基于CNN-RNN的影像报告生成】
2.【卫星图像道路检测DeepLabV3Plus模型】
3.【GAN模型实现二次元头像生成】
4.【CNN模型实现mnist手写数字识别】
5.【fasterRCNN模型实现飞机类目标检测】
6.【CNN-LSTM住宅用电量预测】
7.【VGG16模型实现新冠肺炎图片多分类】
8.【AlexNet模型实现鸟类识别】
9.【DIN模型实现推荐算法】
10.【FiBiNET模型实现推荐算法】
11.【钢板表面缺陷检测基于HRNET模型】

1. 项目简介

本项目实现了A042-ST-GCN模型,用于对花样滑冰动作进行分类。花样滑冰作为一项融合了舞蹈与竞技的运动,其复杂的动作结构和多变的运动轨迹使得动作识别成为一个具有挑战性的任务。为此,本项目利用时空图卷积网络(Spatio-Temporal Graph Convolutional Networks,ST-GCN)进行动作分类。该模型通过对人体骨架的时空数据进行建模,能够有效捕捉动作的时序动态和空间关系,适用于识别花样滑冰中不同类型的动作。A042-ST-GCN是一种基于图卷积网络的架构,结合了时序信息和骨架数据的空间拓扑结构,使得模型能够在复杂的运动场景中具有较高的分类准确率。模型的输入为人体关键点的时序数据,输出为对应的动作类别标签。项目的最终目标是为花样滑冰选手和教练提供智能化的动作识别和分析工具,帮助他们更好地理解运动表现并优化训练策略。

2.技术创新点摘要

通过对项目代码的初步分析,可以得出A042-ST-GCN模型的几个技术创新点:

  1. 时空图卷积网络(ST-GCN)的引入:模型利用ST-GCN对花样滑冰动作进行分类。ST-GCN的优势在于其对人体骨骼关键点的时空动态进行有效建模,这使得模型能够捕捉动作的空间结构和时序特征。相比于传统的卷积神经网络(CNN),该模型能够更加准确地分析和分类人体复杂的运动轨迹,尤其是在花样滑冰这种高难度的体育项目中。
  2. 轻量化的网络结构设计:模型采用了简洁的网络结构,通过少量卷积核来实现动作分类,保持了较高的计算效率。由于整个模型的核心部分仅涉及三个卷积核,因此它在保证模型性能的同时,减少了计算资源的消耗,适合在实际应用场景中使用,尤其是需要实时识别花样滑冰动作时。
  3. 细粒度动作分类:花样滑冰动作分类任务的复杂性在于动作的细粒度分类。跳跃、旋转等动作的类别间差异较大,而同一类动作的内部变化较小。该模型通过对细粒度的分类和处理,使得它可以识别出不同类型的花样滑冰动作,尤其是难以区分的跳跃、旋转和组合动作。
  4. 人体关键点识别技术与动作分类的结合:该模型使用人体关键点检测技术,从视频中提取人体骨架关键点信息,再结合ST-GCN进行动作分类。这样使得模型能够更加精确地理解花样滑冰运动员的动作,从而提高分类的准确性。

在这里插入图片描述

3. 数据集与预处理

本项目使用的数据集是花样滑冰动作分类数据集,该数据集包含了大量关于花样滑冰运动员不同动作的视频片段。数据集中每个视频片段都标注了动作类型,并通过人体关键点提取技术获取了运动员的骨架坐标,形成了时序骨架数据。由于花样滑冰动作复杂多样,数据集涵盖了各种典型的花样滑冰动作,如跳跃、旋转、步伐和托举等。此外,该数据集的特点是动作类别多、细粒度高,类间方差大、类内方差小,这对模型的识别精度提出了较高要求。

在数据预处理中,首先需要对人体骨架的时序数据进行归一化处理。由于不同运动员的体型差异、视频拍摄角度不同,直接使用原始坐标会导致模型性能不稳定。为此,所有骨架点坐标都被归一化到一个统一的坐标系中,以消除这些外部因素的影响。

接下来进行数据增强,这在深度学习中尤为重要。通过对原始数据进行水平翻转、随机旋转、时序剪切等数据增强操作,能够有效增加训练数据的多样性,避免模型在训练过程中过拟合。此外,考虑到不同动作的时长不一致,时序数据经过了固定长度的裁剪或填充,保证每个输入样本的长度相同。

在特征工程方面,本项目主要使用了人体骨架的关键点坐标和这些关键点的速度、加速度等运动特征。通过提取这些时空特征,模型可以更好地捕捉动作的动态变化,并区分不同类别的动作。最终,经过预处理后的数据被送入ST-GCN模型进行训练和分类。

4. 模型架构

  1. 模型结构的逻辑: A042-ST-GCN模型基于时空图卷积网络(ST-GCN),该模型结合了图卷积网络(GCN)和时间卷积网络(TCN),用于人体骨架关键点的动作识别。模型的主要结构如下:
  • 输入层:模型的输入为人体骨架时序数据,每个样本包含多个时刻的骨架关键点坐标。每个骨架节点通过二维坐标 (x, y) 来表示。

  • 时空图卷积层:核心是通过时空图卷积对人体骨架的时空关系进行建模。骨架被表示为图 G=(V,E),其中 V 表示节点,即人体的关节点; E 表示边,即关节点之间的连接,包括空间边和时间边。

    • 空间卷积:在图中,空间卷积作用于同一时刻的关节点,公式为:
    • $$h_v^{(l+1)} = \sum_{u \in \mathcal{N}(v)} \frac{1}{\sqrt{d_v d_u}} W^{(l)} h_u^{(l)}$$
      
    • 其中, hv(l) 是第 lll 层节点 vvv 的特征, N(v)表示节点 vvv 的邻居节点集, W(l)是可学习的权重矩阵,dv 和 du分别是节点 v 和邻居节点 u 的度。
    • 时间卷积:时间卷积用于同一关节点在连续时刻的特征提取,公式为:
    • $$h_v^{(l+1)} = \sum_{t \in T} W^{(l)} h_v^{(l, t)}$$
      
    • 其中 T表示时间维度上的窗口,W(l)是时间卷积的可学习参数。
  • 全连接层:将卷积后的特征进行平展,通过全连接层映射为动作类别的概率分布。

  • 输出层:使用softmax函数输出动作分类的预测结果。

  1. 模型的整体训练流程
  • 前向传播:模型将输入的骨架关键点数据通过时空图卷积层进行处理,提取空间和时间维度上的特征。随后经过全连接层,将高维特征映射为具体的动作类别。
  • 损失函数:使用交叉熵损失函数计算预测类别与真实类别之间的误差:

T T TT TT

  • 其中 yi为真实标签,y^i为模型的预测概率。
  • 优化器:采用Adam优化器进行梯度下降,更新模型的权重。
  1. 评估指标
  • 准确率(Accuracy) :用于评估分类任务的性能,通过计算预测正确的样本占总样本的比例来衡量模型的分类效果。
  • 混淆矩阵:用于分析模型对各个动作类别的分类情况,判断模型是否对某些类别存在误分类。

5. 核心代码详细讲解

1. 数据预处理和特征工程:

提取骨骼点数据:

./build/examples/openpose/openpose.bin --video examples_video.avi --write_json output/ --display 0 --render_pose 0

解释:该命令使用OpenPose从视频中提取骨骼点数据。--video参数指定输入视频,--write_json将骨骼数据保存为JSON格式,--render_pose 0关闭骨骼渲染以提高处理速度。每一帧的骨骼点信息将被存储,供后续模型训练使用。

时空图卷积网络(ST-GCN)

class ST_GCN(nn.Module):def init(self, in_channels, num_class, edge_importance_weighting):super().__init__()# 图卷积层self.graph_conv = GraphConvolutionLayer(in_channels, out_channels)# 时间卷积层self.temporal_conv = nn.Conv2d(out_channels, out_channels, kernel_size=(9, 1), padding=(4, 0))# 全连接层self.fc = nn.Linear(out_channels, num_class)

GraphConvolutionLayer:定义图卷积层,用于捕捉人体关节点之间的空间依赖关系。

nn.Conv2d:时间卷积层,用于提取同一关节点在不同时间帧的动态变化。

fc:全连接层,将卷积后的特征映射到最终的分类标签。

  1. 模型训练与评估:

训练循环:

for epoch in range(num_epochs):model.train()for data, labels in train_loader:optimizer.zero_grad()outputs = model(data)loss = criterion(outputs, labels)loss.backward()optimizer.step()

解释:

model.train():设置模型为训练模式。

optimizer.zero_grad():清除之前计算的梯度。

outputs = model(data):将数据输入模型,获取预测结果。

loss.backward():反向传播计算梯度。

optimizer.step():更新模型参数。

6. 模型优缺点评价

模型优点:

  1. 时空特征捕捉能力强:A042-ST-GCN模型结合了图卷积和时间卷积,能够同时捕捉动作的空间结构和时间动态,特别适合处理像花样滑冰这种复杂的动作序列。
  2. 骨架数据高效建模:通过人体关键点骨架数据,模型减少了对背景、摄像角度等干扰因素的依赖,提升了动作识别的准确性和鲁棒性。
  3. 模型轻量:ST-GCN模型结构相对简洁,包含较少的卷积层,计算资源需求低,适合实时动作识别任务。
  4. 良好的泛化能力:模型在不同类型的动作数据上表现出较好的泛化能力,适用于多样化的动作分类场景。

模型缺点:

  1. 对数据质量敏感:模型依赖于准确的骨架关键点提取,因此在视频质量差、光照变化大或关节点遮挡的情况下,识别效果可能大幅下降。
  2. 缺乏对细节动作的处理能力:虽然ST-GCN能够捕捉全局的空间和时间特征,但对于一些细微的动作差异,如花样滑冰中跳跃和旋转的细节,模型仍可能存在误分类的情况。
  3. 超参数调优复杂:该模型的超参数(如卷积核大小、层数等)对性能影响较大,调优过程可能耗时且不易把握。

可能的改进方向:

  1. 模型结构优化:可以尝试引入注意力机制(如Self-Attention)来提升对细粒度动作的捕捉能力,特别是识别相似动作时的精度。
  2. 超参数调整:通过自动调参方法(如贝叶斯优化)寻找最佳超参数组合,进一步提升模型性能。
  3. 更多的数据增强方法:引入数据增强技术,如随机旋转、时序抖动等,增强模型的泛化能力,提升模型在不同环境中的表现。

↓↓↓更多热门推荐:

U-net网络实现细胞分割

查看全部项目数据集、代码、教程点击下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60148.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

android studio 配置过程

Android studio版本:Android Studio Ladybug | 2024.2.1 windows 10 x64 关键问题解决方法: 1.设置代理: 退出首次配置,进入ide(必要时新建工程)然后: 然后重启ide 等待下载完成。 代理地…

关于分治法左右区间单调遍历应该如何设计

阅读以下文章,首先至少要求通过一道分治法的题目或听过一道该类型的讲解。 对于分治的题目,想必你应该知道,通常我们是对于一个区间拆分两个部分,而最小子问题通常是只包含一个元素的区间数组。为了后续方便处理更大范围的区间&am…

【软件测试】敏捷模型(Scrum模型)和V模型、W模型

敏捷模型 前面的那些模型以前非常流行,但现在开发人员在使用的时候会遇到各种问题。主要困难包括在项目开发期间处理来自客户的变更请求,以及合并这些变更所需要的高成本和时间。 在实际工作中,一款产品的功能是不断在变化的 所以为了克服这…

Tomcat(11) 什么是Context?如何在Tomcat中配置Context?

在Tomcat中,Context是一个非常重要的组件,它代表了运行在Tomcat服务器上的一个独立的Web应用程序。每个Context组件通常对应一个特定的Web应用,如一个WAR文件或一个目录,它包含了该Web应用的所有资源和配置。 什么是Context&…

大数据新视界 -- 大数据大厂之 Impala 性能优化:数据加载策略如何决定分析速度(上)(15/30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

vue2 自动化部署 shell 脚本

需求场景:在云平台中进行开发时,由于无法连接外网,在部署前端项目时,是通过本地打包再上传到服务器的方式进行部署的。基于这种部署场景,通过 shell 脚本进行部署流程优化,具体如下: 1、服务器…

掌握核密度图:精准描绘不同年龄段的血糖分布

在医学研究中,数据的可视化是理解复杂信息和做出科学决策的关键。今天,我们将深入探讨一种强大的数据可视化工具——核密度图(Kernel Density Plot,简称KDE),并通过Python代码实例,展示如何基于…

实验室信息管理系统源码,医院LIS系统源码,C/S结构,C#语言开发,适合上项目。

实验室信息管理系统源码,医院LIS系统源码,三甲以下医院需求都能满足。 LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化,检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后,自动生成打…

计算机在启动一直到系统加载完成期间进行了哪些操作

零 扇区和分区的概念与联系 概念 扇区(Sector): 扇区是硬盘中最小的物理存储单位,每个扇区通常为512字节(一些新硬盘为4KB)。硬盘在制造时会被划分成许多扇区,这些扇区在硬盘中依次排列。数据被…

Meta AI 新技术,赋予机器人 “触觉” 的革命

Meta AI 新技术,赋予机器人 “触觉” 的革命 简介 传统机器人的局限 Meta AI 的新技术突破 技术应用前景 未来展望 简介 在科技飞速发展的今天,人工智能领域不断取得令人惊叹的突破。11月4日,Meta公司宣布其基础人工智能研究团队(FAIR)在…

IPguard与Ping32加密软件对比评测,哪款更适合企业数据保护?

在信息化时代,企业的数据安全至关重要,特别是在文件管理和源代码加密方面,更需要强有力的防护工具。目前,IPguard与Ping32是市场上两款常用的企业数据加密软件。今天,我们从多方面进行对比,为大家解析哪款软…

【linux】CentOS 的软件源(Repository)学习

CentOS 7 的软件源(Repository)是用于分发和管理软件包的集中存储库。这些源包含了操作系统所需的各种软件包,包括系统工具、库、应用程序等。通过配置不同的软件源,用户可以选择从不同的服务器下载软件包,以提高下载速…

PyQt5超详细教程终篇

PyQt5超详细教程 前言 接: [【Python篇】PyQt5 超详细教程——由入门到精通(序篇)](【Python篇】PyQt5 超详细教程——由入门到精通(序篇)-CSDN博客) 建议把代码复制到pycahrm等IDE上面看实际效果,方便理…

wordpress搬家迁移后怎么修改数据库用户名

在WordPress中修改数据库用户名,你需要更新WordPress的配置文件wp-config.php。以下是步骤和示例代码: 使用FTP客户端或文件管理器登录到你的网站的主机账户。 找到wp-config.php文件,它通常位于WordPress安装的根目录中。 打开wp-config.…

JSX 语法与基础组件使用

在 React Native 中,JSX 是一种 JavaScript 的语法扩展,用于描述 UI 界面。JSX 语法类似于 HTML,但它是 JavaScript 的语法糖,可以直接在 JavaScript 代码中编写 UI 组件。本章节将介绍 JSX 语法的基础知识,以及 React…

【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】试卷(4)

前言 大家好吖,欢迎来到 YY 滴计算机网络 系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 本博客主要内容,收纳了一部门基本的计算机网络题目,供yy应对期中考试复习。大家可以参考 本章是去答案版本。带答案的版本在下…

Spring Boot整合Lombok详解

文章目录 Spring Boot整合Lombok详解一、引言二、整合Lombok1、安装Lombok插件2、添加Lombok依赖3、使用Lombok注解1.1、Data1.2、NoArgsConstructor、AllArgsConstructor和RequiredArgsConstructor1.3、Getter和Setter 三、Lombok的工作原理四、总结 Spring Boot整合Lombok详解…

会议直击|美格智能受邀出席第三届无锡智能网联汽车生态大会,共筑汽车产业新质生产力

11月10日,2024世界物联网博览会分论坛——第三届无锡智能网联汽车生态大会在无锡举行,美格智能CEO杜国彬受邀出席,并参与“中央域控:重塑汽车智能架构的未来”主题圆桌论坛讨论,与行业伙伴共同探讨智能网联汽车产业领域…

git同步fork和原始仓库

git同步fork和原始仓库 在使用Fork的情况下,保持你的Fork与原始仓库(上游仓库)同步是一项重要的维护任务,特别是当你想要持续贡献或保持你Fork中的项目更新时。以下是详细的步骤,指导你如何将Fork与上游仓库同步&…

【Vue】-组件开发-一个树组件

我们来自己搞一个树组件 1. 创建 Vue 项目 如果你还没有创建 Vue 项目,可以使用 Vue CLI 快速创建: vue create my-tree-component cd my-tree-component2. 安装依赖 确保安装了 Vue Router 和 Vuex(如果需要状态管理)&#x…