一、ARMv8寄存器之通用、状态、特殊寄存器

ARMV8核心寄存器数量是非常大的,为了更好的学习,可以划分为以下几大类:

·通用寄存器。这类寄存器主要是用来暂存数据和参与运算。通过load\store指令操作。
·状态寄存器。AArch64体系结构使用PSTATE寄存器表示当前处理器状态。
·特殊寄存器。有专门的用途,用于控制处理器的行为,或表示CPU的状态。
·系统寄存器。除了以上寄存器,ARMv8体系结构还定义了很多系统寄存器,用来完成对处理器不同功能的配置。对应ARMv7的cp15寄存器。

一、 通用寄存器

  1. ARMv8提供了31个通用寄存器 R0~R30;
  2. 在AArch32架构,通用寄存器w0~w30是32bit宽度;
  3. 在AArch64架构,通用寄存器x0~x30是64bit宽度;

X0-X7 用于参数传递
X9-X15 在子函数中使用这些寄存器时,直接使用即可, 无需save/restore. 在汇编代码中x9-x15出现的频率极低。在子函数中使用这些寄存器时,直接使用即可, 无需save/restore.。在汇编代码中x9-x15出现的频率极低。
X19-X29 在callee子函数中使用这些寄存器时,需要先save这些寄存器,在退出子函数时再resotre。在callee子函数中使用这些寄存器时,需要先save这些寄存器,在退出子函数时再resotre。
 X8, X16-X18, X29, X30 这些都是特殊用途的寄存器。
 – X8: 用于返回结果
 – X16、X17 :进程内临时寄存器
 – X18 :resrved for ABI
 – X29 :FP(frame pointer register)
 – X30 :LR

在简单讲一下函数的局部变量和临时变量之间的区别:

作用域(Scope)不同: 局部变量(Local variables)是定义在函数内部的变量,它们的作用域仅限于该函数内部。临时变量(Temporary variables)通常是用于存储中间计算结果的变量,它们的作用域更加局限,可能只在某个代码块或表达式内部。
生命周期不同: 局部变量的生命周期与函数的执行周期相同,即在函数调用时创建,在函数返回时销毁。临时变量的生命周期则更短暂,通常仅在表达式或代码块的执行期间存在。
存储位置不同: 局部变量通常存储在函数的栈帧(Stack Frame)中,以便函数调用时能够访问。临时变量通常存储在寄存器或者栈上,以减少内存访问开销。
使用目的不同: 局部变量用于存储函数内部需要持久保存的数据,如参数、返回值、中间计算结果等。临时变量主要用于存储一些中间计算结果,在表达式或代码块结束后可以丢弃。
优化方式不同: 编译器通常会尽量将局部变量存储在寄存器中,以提高访问效率。对于临时变量,编译器则更加倾向于直接使用寄存器,避免不必要的内存访问。


什么是栈帧:

栈帧是函数调用时在内存栈上分配的一块区域,用于存储函数的局部变量和参数等信息。每当一个函数被调用时,CPU 会在内存栈上为该函数创建一个新的栈帧。栈帧通常包含以下几个部分:
返回地址: 当前函数返回时需要跳转的地址,通常是调用函数的下一条指令。返回地址通常是由调用指令自动压入栈的。
函数参数: 传递给当前函数的参数值,它们需要被保存在栈帧中。当函数返回时,这些参数值需要被恢复。
局部变量: 函数内部声明的局部变量,它们的生命周期仅限于函数的执行期间。这些变量需要被保存在栈帧中,以免被其他函数覆盖。
寄存器备份: 在函数调用过程中,需要保存一些重要的寄存器值,以便在返回时恢复。这些寄存器可能包括函数返回地址寄存器、帧指针寄存器等。
动态分配的内存: 函数在执行过程中动态分配的内存空间,需要在栈帧中保存相关信息。这些动态分配的内存会在函数返回时被自动释放。

二:状态寄存器PSTAE
在ARMv7架构中使用程序状态寄存器(Current Program Status Register,CPSR)来表示当前的处理器状态(processor stste),而在ARMv8里使用PSTATE寄存器来表示。下面我们来看一下AArch64中PSTATE各字段所代表的含义。

注意: PSTATE(process state)是一些状态位,一些位仅在aarch32 state下使用、一些位仅在aarch64 state下使用、一些位可以同时在aarch32/aarch64 state下使用;我们在这里仅分析AArch64。


在aarch64中,只可以通过MSR/MRS指令访问特殊寄存器(special-purpose)的方式读写PSTATE中的位。除了这些特殊寄存器中表示的位,PSTTAE的其它位都是不能访问的。

这些特殊的寄存器包含: NZCV、DAIF、CurrentEL、SPSel、PAN、UAO,可以使用MRS/MSR指令,直接读写这些寄存器。

例如我们可以使用MSR 指令直接写入 DAIFSET 或 DAIFCLR 指令操作(注:DAIFSET 和 DAIFCLR 是两个特殊的指令操作,用于设置和清除 DAIF 寄存器中的某些位。)

MSR DAIFSET, #0x2  // 设置 DAIF 寄存器的 I 位(IRQ 屏蔽位)
MSR DAIFCLR, #0x2  // 清除 DAIF 寄存器的 I 位(IRQ 屏蔽位)
上述指令实际上会修改DAIF寄存器的对应位

特殊寄存器    PSTATE 位

我们可以认为这些位其实还是都在PSTATE寄存器中,然后相关的位被抽象到了NZCV,DAIF、CurrentEL、SPSel、PAN、UAO 寄存器中,方便指令访问。

三:特殊寄存器
下面我们来看一下ARMv8中的特殊寄存器。

1. 保存处理状态寄存器

当我们运行一个异常处理程序时,处理器的处理状态会保存到保存处理状态寄存器(Saved Program Status Register, SPSR)里。这个寄存器类似于ARMv7架构中的CPSR,当异常将要发生时,处理器会把PSTATE寄存器的值暂时保存到SPSR里;当异常处理完成并返回时,再把SPSR的值恢复到PSTATE寄存器。

★CurrentEL寄存器

该寄存器表示PSTATE寄存器中的EL字段,其中保存了当前异常等级。使用MRS指令可 以读取当前异常等级。

 0: 表示 EL0
 1: 表示 EL1
 2: 表示 EL2
 3: 表示 EL3
★DAIF寄存器

该寄存器表示PSTATE寄存器中的{D, A, I, F}字段。

★SPSel寄存器

该寄存器表示PSTATE寄存器中的SP字段,用于在SP_EL0和SP_ELn中选择SP寄存器。

★PAN寄存器

PAN寄存器表示PSTATE寄存器中的PAN (Privileged Access Never,特权禁止访问)字段。 可以通过MSR和MRS指令来设置PAN寄存器。当内核态拥有访问用户态内存或者执行用户态程序的能力时,攻击者就可以利用漏洞轻松地执行用户的恶意程序。为了修复这个漏洞, 在ARMV8.1中新增了 PAN特性,防止内核态恶意访问用户态内存。如果内核态需要访问用 户态内存,那么需要主动调用内核提供的接口,例如copy_from_user()或者copy_to_user() 函数。

PAN寄存器的值如下。

 0:表示在内核态可以访问用户态内存。
 1:表示在内核态访问用户态内存会触发一个访问权限异常。
★UAO寄存器

该寄存器表示PSTATE寄存器中的UAO (User Access Override,用户访问覆盖)字段。我 们可以通过MSR和MRS指令设置UAO寄存器。

 特权指令:如 LDR、STR 等,可以访问任意内存区域,包括特权保护的区域。
 非特权指令:如 LDTR、STTR 等,通常只能访问用户空间的内存区域,受到限制。
 当 UAO = 0 时,非特权指令(如 LDTR、STTR)的行为与特权指令(如 LDR、STR)是不同的,受到内存访问权限的限制。
 当 UAO = 1 时,非特权指令(如 LDTR、STTR)的行为与特权指令(如 LDR、STR)是一致的,即"用户访问被覆盖"。也就是说,即使是在用户模式(EL0)下执行非特权指令,也能够访问特权保护的内存区域,就像在特权模式(EL1/EL2)下执行特权指令一样。
使用场景:

UAO = 1 的机制通常用于支持一些特殊的安全需求,例如在特权模式下执行用户空间代码、处理敏感的内存区域等。

★NZCV寄存器

该寄存器表示PSTATE寄存器中的{N, Z, C, V}字段。

 2. 零寄存器

ARMv8体系结构提供两个零寄存器(zero register),这些寄存器的内容全是0,可以用作源寄存器,也可以用作目标寄存器。WZR是32位的零寄存器,XZR是64位的零寄存器。

3. PC寄存器

PC寄存器(Program Counter)通常用来指向当前运行指令的下一条指令的地址,用于控制程序中指令的运行顺序,但是我们不能通过指令来直接访问它。

PC 寄存器的主要作用包括:

保存当前指令的地址:PC 寄存器会始终保存当前正在执行的指令的地址。每当执行一条指令,PC 寄存器的值都会自动加 4(或加 2,取决于指令宽度)以指向下一条要执行的指令。
支持分支跳转:当执行一条分支指令(如 B、BL 等)时,CPU 会将 PC 寄存器的值更新为分支目标地址,从而实现程序控制流的转移。
参与异常处理:当发生异常(如中断、系统调用等)时,硬件会自动保存当前 PC 的值到 ELR 寄存器,以便于事后恢复执行。


4. SP寄存器

ARMv8体系结构支持4个异常等级,每一个异常等级都有一个专门的SP(Stack Pointer)寄存器SP_ELn, 如处理器运行在ELI时选择SP_EL1寄存器作为SP寄存器。

 SP_EL0: ELO下的SP寄存器。
 SP_EL1: ELI下的SP寄存器。
 SP_EL2: EL2下的SP寄存器。
 SP_EL3: EL3下的SP寄存器。
当处理器运行在比ELO高的异常等级时,处理器可以访问如下寄存器。

 当前异常等级对应的SP寄存器SP_ELs
 ELO对应的SP寄存器SP_ELO可以当作一个临时寄存器,如Linux内核使用该寄存器 存放进程中task_struct数据结构的指针。
注意:当处理器运行在EL0时,它只能访问SP_EL0,而不能访问其他高级的SP寄存器。
SP 寄存器的主要作用包括:

管理程序栈:SP 寄存器存放着当前程序栈的顶部地址。当执行压栈和出栈操作时,SP 寄存器的值会相应地增加或减少。这样可以确保程序栈的正确使用。
支持函数调用:在函数调用过程中,CPU 会自动保存返回地址、函数参数、局部变量等信息到程序栈中。SP 寄存器的值会随之动态变化,以管理这些栈帧。
参与中断/异常处理:当发生中断或异常时,CPU 会自动保存当前上下文(包括 SP 寄存器的值)到栈中,并切换到特定的异常处理模式。这样可以确保异常返回后能够恢复程序的执行状态。

5. ELR寄存器           

ELR(Exception Link Register) 寄存器存放了异常返回的地址。

ELR寄存器的主要作用包括:

保存异常发生前的程序计数器(PC)值:当处理器进入异常模式(如中断、系统调用等)时,ELR 寄存器会自动保存异常发生前的 PC 值。这样在异常处理完成后,就可以从 ELR 中恢复 PC 值,继续执行异常前的指令序列。
支持异常处理的返回:在异常处理程序中,可以使用 ERET 指令从异常返回。ERET 指令会从 ELR 寄存器中恢复 PC 值,从而实现对异常的正确返回。

               

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/58457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云渲染突破酒店3D动画渲染速度与成本瓶颈!

3D动画已经成为众多行业,尤其是酒店业,用于营销和展示其独特卖点的重要工具。通过生动的3D动画,酒店能够突出其特色和优势,从而吸引更多潜在客户。然而,在3D动画制作过程中,渲染环节往往是一个耗时且技术要…

LabVIEW偏振调制激光高精度测距系统

在航空航天、汽车制造、桥梁建筑等先进制造领域,许多大型零件的装配精度要求越来越高,传统的测距方法在面对大尺寸、高精度测量时,难以满足工业应用的要求。绝对测距技术在大尺度测量上往往会因受环境影响大、测距精度低而无法满足需求。基于…

WPF+MVVM案例实战(六)- 自定义分页控件实现

文章目录 1、项目准备2、功能实现1、分页控件 DataPager 实现2、分页控件数据模型与查询行为3、数据界面实现 3、运行效果4、源代码获取 1、项目准备 打开项目 Wpf_Examples,新建 PageBarWindow.xaml 界面、PageBarViewModel.cs ,在用户控件库 UserControlLib中创建…

WPF+MVVM案例实战(十一)- 环形进度条实现

文章目录 1、运行效果2、功能实现1、文件创建与代码实现2、角度转换器实现3、命名空间引用3、源代码下载1、运行效果 2、功能实现 1、文件创建与代码实现 打开 Wpf_Examples 项目,在Views 文件夹下创建 CircularProgressBar.xaml 窗体文件。 CircularProgressBar.xaml 代码实…

系统架构图设计(行业领域架构)

物联网 感知层:主要功能是感知和收集信息。感知层通过各种传感器、RFID标签等设备来识别物体、采集信息,并对这些信息进行初步处理。这一层的作用是实现对物理世界的感知和初步处理,为上层提供数据基础网络层:网络层负责处理和传输…

sublime Text中设置编码为GBK

要在sublime Text中设置编码为GBK,请按照以下步骤操作 1.打开Sublime Text编辑器, 2.点击菜单栏中的“Preferences”(首选项)选项,找打Package Control选项。 3.点击Package Control,随后搜索Install Package并点击,如下图 4.再…

为什么数据库连接很消耗资源?

1背景 开发应用程序久了,总想刨根问底,尤其对一些有公共答案的问题。大家都能解释,但是追根究底,都解释不清。凡是都有为什么,而且用数字说明问题是最直观的。 本文主要想探究一下连接数据库的细节,尤其是…

目标检测:YOLOv11(Ultralytics)环境配置,适合0基础纯小白,超详细

目录 1.前言 2. 查看电脑状况 3. 安装所需软件 3.1 Anaconda3安装 3.2 Pycharm安装 4. 安装环境 4.1 安装cuda及cudnn 4.1.1 下载及安装cuda 4.1.2 cudnn安装 4.2 创建虚拟环境 4.3 安装GPU版本 4.3.1 安装pytorch(GPU版) 4.3.2 安装ultral…

链表(数据结构)

一. 单链表 1.1 概念与结构 再上一篇中我们讲到顺序表,但是顺序表也是有很多的问题,像申请的空间过多过少或者增容该才能不浪费空间,今天我们就来认识一个新的知识,叫做链表,链表也是线性表的一种,链表是…

Docker本地安装Minio对象存储

Docker本地安装Minio对象存储 1. 什么是 MinIO? MinIO 是一个开源的对象存储服务器。这意味着它允许你在互联网上存储大量数据,比如文件、图片、视频等,而不需要依赖传统的文件系统。MinIO 的特点在于它非常灵活、易于使用,同时…

数据结构算法学习方法经验总结

DSA:Data Structures, Algorithms, and Problem-Solving Techniques 三大核心支柱 一次学习一个主题,按照如下顺序学习 如何开始学习新的主题 学习资源 https://www.youtube.com/playlist?listPLDN4rrl48XKpZkf03iYFl-O29szjTrs_O (Algorithms) https://ww…

Java程序设计:spring boot(13)——全局异常与事务控制

1 Spring Boot 事务支持 在使⽤ Jdbc 作为数据库访问技术时,Spring Boot框架定义了基于jdbc的PlatformTransaction Manager 接⼝的实现 DataSourceTransactionManager,并在 Spring Boot 应⽤ 启动时⾃动进⾏配置。如果使⽤ jpa 的话 Spring Boot 同样提供…

vue2和vue3在html中引用组件component方式不一样

我的vue版本是&#xff1a;20.17.0 一、在HTML中&#xff0c;引用组件格式区别。 vue2引用组件可以是file.vue格式&#xff0c;需要导入&#xff1a;<script src"https://unpkg.com/http-vue-loader"></script>才可以识别vue格式。 vue3引用组件格式是…

量子容错计算

基本思想 容错量子计算的基本想法是&#xff0c;在合理编码后的量子态上直接量子计算&#xff0c;以至于不完全需要解码操作。假设有一个简单的量子电路&#xff0c;但不幸的是噪声影响着这个电路的每一个元件&#xff0c;包括量子态的制备、量子逻辑门、对输出的测量&#x…

Redis 哨兵 总结

前言 相关系列 《Redis & 目录》《Redis & 哨兵 & 源码》《Redis & 哨兵 & 总结》《Redis & 哨兵 & 问题》 参考文献 《Redis的主从复制和哨兵机制详解》《Redis中的哨兵&#xff08;Sentinel&#xff09;》《【Redis实现系列】Sentinel自动故…

怎样取消默认逐份打印

如果你遇到打印任务不完成&#xff0c;无法打印下一张的情况&#xff0c;可以尝试下面步骤解决问题&#xff1a; 取消勾选 逐份打印 1、检查打印机状态&#xff1a; 确保打印机与电脑处于联机状态&#xff0c;指示灯应常亮&#xff1b; 2、取消“逐份打印”&#xff1a; 打…

音视频如何轻松转换?来看看这四款工具:

在这个数据普及的时代&#xff0c;视频图片文字等形式的记录&#xff0c;变成了我们习以为常&#xff0c;而传统的文字往往具有搞得信息密度和更强的传播力&#xff1b;我是经常需要将视频内容转换成文&#xff0c;深有体会当下时代将视频内容转化为文字的需求越来越旺盛了&…

highcharts的datalabels标签格式化

Highcharts的数据标签格式化 代码如下 plotOptions: {series: {dataLabels: {enabled: true,format: {y:.2f} mm}} },y就是当前数据点的值&#xff0c;.2f代表2位小数&#xff0c;效果如下图

卡尔曼滤波器-Kalmen Filter-1

卡尔曼滤波器是一种最优递归数据处理算法&#xff0c;它更像是一种观测器&#xff0c;而不是一般意义上的滤波器。卡曼滤波器的应用非常广泛&#xff0c;尤其是在导航当中。它的广泛应用是因为我们生活的世界中存在着大量的不确定性&#xff0c;当我们去描述一个系统的时候&…

YOLOV8 |搞懂检测头

代码: yaml结构的最后一层&#xff0c;接了前面三个层的&#xff0c;有3个检测头&#xff1a; # YOLOv8.0n head head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsam…