【人工智能-初级】第6章 决策树和随机森林:浅显易懂的介绍及Python实践

文章目录

    • 一、决策树简介
    • 二、决策树的构建原理
      • 2.1 决策树的优缺点
        • 优点
        • 缺点
    • 三、随机森林简介
      • 3.1 随机森林的构建过程
      • 3.2 随机森林的优缺点
        • 优点
        • 缺点
    • 四、Python实现决策树和随机森林
      • 4.1 导入必要的库
      • 4.2 加载数据集并进行预处理
      • 4.3 创建决策树模型并进行训练
      • 4.4 可视化决策树
      • 4.5 创建随机森林模型并进行训练
      • 4.6 模型预测与评估
    • 五、总结
      • 5.1 学习要点
      • 5.2 练习题

一、决策树简介

决策树(Decision Tree)是一种树状结构的监督学习算法,可以用于分类和回归任务。它通过递归地将数据划分成不同的子集,直至每个子集只包含一个类别(对于分类问题)或达到某种特定的条件(对于回归问题)。

决策树非常直观,类似于人们在做决定时的思维过程。例如,在判断是否买房时,可能会依次考虑预算、房屋位置和是否满足个人需求等因素。决策树的结构由节点(node)和边(branch)组成,节点表示数据特征,边表示根据特征划分的数据路径。

二、决策树的构建原理

决策树的构建过程主要包括以下几步:

  1. 选择特征进行分裂:在每个节点,选择一个特征对数据进行划分,使得划分后的子集之间的纯度(或均匀度)尽可能高。
  2. 分裂节点:根据选择的特征将数据划分为两个或多个子集。
  3. 停止条件:递归地对每个子集构建子节点,直至满足停止条件(如树的最大深度,或节点中的样本数小于某个阈值)。

在选择特征进行分裂时,通常会使用一些标准来衡量子集的纯度,包括:

  • 基尼不纯度(Gini Impurity):用于衡量节点中样本的混杂程度,值越小表示节点越纯。
    G = 1 − ∑ i = 1 k p i 2 G = 1 - \sum_{i=1}^{k} p_i^2 G=1i=1kpi2
    其中,p_i 表示第 i 类样本的比例。

  • 信息增益(Information Gain):用于衡量使用某个特征划分后的不确定性减少的程度。
    I G = H ( D ) − ∑ i = 1 m ∣ D i ∣ ∣ D ∣ H ( D i ) IG = H(D) - \sum_{i=1}^{m} \frac{|D_i|}{|D|} H(D_i) IG=H(D)i=1mDDiH(Di)
    其中,H(D) 表示数据集 D 的熵,|D_i| 表示划分后的子集 D_i 的大小。

2.1 决策树的优缺点

优点
  1. 易于理解:决策树的结构简单直观,可以将复杂的决策过程可视化。
  2. 适应性强:决策树能够处理数值型和类别型特征,并且对数据的预处理要求较低。
  3. 能够处理多类别问题:决策树可以自然地处理多类别的分类问题。
缺点
  1. 容易过拟合:当决策树的深度过大时,模型容易学习到数据中的噪声,导致过拟合。
  2. 对小数据变化敏感:由于决策树的每一次划分都会影响后续的结构,数据的轻微变化可能会导致决策树的结构发生较大变化。

三、随机森林简介

随机森林(Random Forest)是一种集成学习方法,通过结合多个决策树的预测结果来提高分类或回归的性能。它通过随机采样和特征选择来生成多个相互独立的决策树,并将这些决策树的输出通过投票(分类任务)或平均(回归任务)来得到最终的预测结果。

3.1 随机森林的构建过程

  1. 随机采样:从原始数据集中有放回地随机抽取样本,生成多个训练数据集,这一过程称为 Bagging(Bootstrap Aggregating)
  2. 特征选择:在构建每棵决策树时,随机选择部分特征用于分裂节点,以保证每棵树的多样性。
  3. 集成决策:对于分类任务,通过投票的方式决定最终分类结果;对于回归任务,通过取平均值来得到最终预测结果。

3.2 随机森林的优缺点

优点
  1. 高准确率:由于随机森林结合了多个决策树,能够显著提高模型的准确率和鲁棒性。
  2. 防止过拟合:随机森林通过随机采样和特征选择,减少了单棵决策树可能出现的过拟合问题。
  3. 特征重要性:随机森林可以评估每个特征对分类结果的重要性,从而帮助理解数据。
缺点
  1. 计算复杂度高:构建和集成多个决策树需要较高的计算资源和时间。
  2. 不可解释性:相比单棵决策树,随机森林的结构更复杂,不容易进行可视化和解释。

四、Python实现决策树和随机森林

接下来我们通过Python来实现决策树和随机森林,使用 scikit-learn 库来帮助我们完成这一任务。

4.1 导入必要的库

首先,我们需要导入一些必要的库:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
  • numpy:用于数值计算。
  • matplotlib:用于数据可视化。
  • sklearn.datasets:用于加载 Iris 数据集,这是一个经典的多分类数据集。
  • train_test_split:用于将数据集拆分为训练集和测试集。
  • DecisionTreeClassifier:用于创建决策树分类器。
  • RandomForestClassifier:用于创建随机森林分类器。
  • accuracy_score, confusion_matrix, classification_report:用于评估模型的性能。

4.2 加载数据集并进行预处理

我们使用 Iris 数据集,这是一个常用的多分类数据集,包含三类花(山鸢尾、变色鸢尾、维吉尼亚鸢尾),每类有50个样本。

# 加载Iris数据集
data = load_iris()
X = data.data
y = data.target# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  • load_iris():加载Iris数据集,X 是特征矩阵,y 是标签。
  • train_test_split:将数据集拆分为训练集和测试集,20%的数据用于测试。

4.3 创建决策树模型并进行训练

我们创建一个决策树分类器,并用训练集进行模型训练。

# 创建决策树分类器
dt = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42)# 训练模型
dt.fit(X_train, y_train)
  • DecisionTreeClassifier(criterion=‘gini’, max_depth=3):创建决策树分类器,使用基尼不纯度作为分裂标准,最大深度为3。
  • dt.fit(X_train, y_train):用训练数据拟合决策树模型。

4.4 可视化决策树

为了更好地理解决策树的结构,我们可以使用 plot_tree 方法对其进行可视化。

# 可视化决策树
plt.figure(figsize=(12, 8))
plot_tree(dt, filled=True, feature_names=data.feature_names, class_names=data.target_names)
plt.show()

通过上述代码,我们可以看到决策树的结构,包括每个节点的特征、基尼不纯度、样本数量以及类别分布。

4.5 创建随机森林模型并进行训练

接下来,我们创建一个随机森林分类器,并用训练集进行模型训练。

# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=100, criterion='gini', random_state=42)# 训练模型
rf.fit(X_train, y_train)
  • RandomForestClassifier(n_estimators=100, criterion=‘gini’):创建随机森林分类器,包含100棵决策树,使用基尼不纯度作为分裂标准。
  • rf.fit(X_train, y_train):用训练数据拟合随机森林模型。

4.6 模型预测与评估

使用测试集对决策树和随机森林模型分别进行预测,并评估其性能。

# 决策树预测
y_pred_dt = dt.predict(X_test)
accuracy_dt = accuracy_score(y_test, y_pred_dt)
print(f"决策树模型的准确率: {accuracy_dt * 100:.2f}%")# 随机森林预测
y_pred_rf = rf.predict(X_test)
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"随机森林模型的准确率: {accuracy_rf * 100:.2f}%")
  • dt.predict(X_test)rf.predict(X_test):分别对测试集进行预测。
  • accuracy_score:计算预测的准确率。

我们可以看到随机森林模型的准确率通常比单棵决策树要高,这是因为随机森林通过集成多个决策树的预测结果来提高模型的泛化能力。

五、总结

决策树是一种简单直观的监督学习算法,可以用于分类和回归任务。它通过递归地将数据划分成不同的子集,直至达到某种特定的条件。随机森林则是通过结合多个决策树来提高模型的性能,是一种强大的集成学习方法。

5.1 学习要点

  1. 决策树原理:决策树通过递归划分数据来建立分类或回归模型,使用基尼不纯度或信息增益来衡量划分的好坏。
  2. 随机森林原理:随机森林结合了多个决策树,通过随机采样和特征选择来提高模型的准确率和鲁棒性。
  3. Python实现:可以使用 scikit-learn 库中的 DecisionTreeClassifierRandomForestClassifier 轻松实现决策树和随机森林。

5.2 练习题

  1. 使用决策树对 Iris 数据集进行回归任务,观察模型的表现。
  2. 使用 sklearn.datasets 模块中的 load_wine 数据集,构建一个随机森林分类模型,预测葡萄酒的类别。
  3. 尝试调整决策树和随机森林的参数,如树的最大深度、估计器数量等,观察模型的性能变化。

希望本文能帮助您更好地理解决策树和随机森林的基本概念和实现方法。下一篇文章将为您介绍K-Means聚类及其Python实现。如果有任何问题,欢迎在评论中讨论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/57601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中国移动机器人将投入养老场景;华为与APUS共筑AI医疗多场景应用

AgeTech News 一周行业大事件 华为与APUS合作,共筑AI医疗多场景应用 中国移动展出人形机器人,预计投入养老等场景 作为科技与奥富能签约,共拓智能适老化改造领域 天与养老与香港科技园,共探智慧养老新模式 中山大学合作中国…

[Python学习日记-53] Python 中的正则表达式模块 —— re

[Python学习日记-53] Python 中的正则表达式模块 —— re 简介 re 模块 练习 简介 我们在编程的时候经常会遇到想在一段文字当中找出电话号码、身份证号、身高、年龄之类的信息,就像下面的数据一样 # 文件名:美丽学姐联系方式.txt 姓名 地区 …

微信小程序美团点餐

引言:外卖已经成为了都市人的必备,在无数个来不及(懒得)做饭的时刻拯救孤单寂寞的胃。美团外卖无疑是外卖届的领头羊,它的很多功能与设计都值得我们学习。本文将从五个方面,对美团外卖展开产品分析&#xf…

【ArcGIS Pro实操第4期】绘制三维地图

【ArcGIS Pro实操第4期】绘制三维地图 ArcGIS Pro绘制三维地图-以DEM高程为例参考 如何使用ArcGIS Pro将栅格数据用三维的形式进行表达?在ArcGIS里可以使用ArcScene来实现,ArcGIS Pro实现原理跟ArcScene一致。由于Esri未来将不再对ArcGIS更新&#xff0c…

深入浅出神经网络:从基础原理到高级应用

第5章 神经网络 更加详细内容可以看这篇文章 5.1 神经元模型 神经网络的基本单元是神经元模型。神经元模拟了生物神经元的行为,通过接收输入信号,进行加权求和,然后经过激活函数输出结果。 数学上,一个简单的神经元可以表示为&…

pipeline开发笔记

pipeline开发笔记 jenkins常用插件Build Authorization Token Root配置GitLab的webhooks(钩子)配置构建触发器--示例 piblish over sshBlue OceanWorkspace Cleanup PluginGit插件PipelineLocalization: Chinese (Simplified) --中文显示Build Environment Plugin 显示构建过程…

ArcGIS 10.8 安装教程

目录 一、ArcGIS10.8二、安装链接三、安装教程四、ArcGIS实战 (一)ArcGIS10.8 1. 概述 ArcGIS 10.8是由美国Esri公司开发的GIS平台,用于处理、分析、显示和管理地理数据,并实现数据共享。它具有新特性和功能,性能更…

iOS MPNowPlayingInfoCenter 通知栏、锁屏 显示当前播放的媒体信息

前言 MPNowPlayingInfoCenter 是 iOS 框架 MediaPlayer 中的一个类,主要用于管理锁屏界面、控制中心、通知中心中显示的“当前播放”媒体信息。它允许开发者向用户展示正在播放的音乐或媒体信息,并控制媒体播放。 通过 MPNowPlayingInfoCenter&#xf…

新电脑Win11家庭中文版跳过联网激活方法(教程)

预装Win11家庭中文版的新电脑,如何跳过联网激活;由于微软限制必须要联网激活,需要使用已有的微软账户登入或者注册新的微软账户后才可以继续开机使用,Win11联网后系统会自动激活。下面介绍一下初次开机初始化电脑时如何跳过联网激…

猫咪掉毛还容易应激,哪款宠物空气净化器可以吸毛且低噪?

今年的双十一第一波优惠我没有抢,因为我在犹豫我真的必须要买宠物空气净化器,但是会不会有很多副作用等等问题,让我一直不敢下手。 一直犹豫买不买是因为我家养了一只爱掉毛的小猫咪,家里每天都是想着要清理猫咪掉下来的猫毛&…

又是一年 1024

今天是 1024 程序员节,现在是一名大数据讲师,我和往常一样,依旧在讲课中度过。对于很多程序员来说,这一天也许是属于代码、调试和无数行 SQL 查询的,而对于我来说,虽然工作内容不同,却也和数据、…

软考算法——线性表、栈和队列、串、数组、矩阵和广义表

软考算法(一) 线性表定义顺序表单链表循环链表双向链表 性能分析线性表插入删除操作 栈和队列栈队列循环队列 串、数组、矩阵和广义表串串的基本操作串的存储结构 数组数组的存储地址计算 矩阵——稀疏矩阵上三角矩阵下三角矩阵 广义表 线性表 定义 线性…

设置K8s管理节点异常容忍时间

说明 每个节点上的 kubelet 需要定时向 apiserver 上报当前节点状态,如果两者间网络异常导致心跳终端,kube-controller-manager 中的 NodeController 会将该节点标记为 Unknown 或 Unhealthy,持续一段时间异常状态后 kube-controller-manage…

软考——计算机网络概论

文章目录 🕐计算机网络分类1️⃣通信子网和资源子网2️⃣网络拓扑结构3️⃣ 计算机网络分类3:LAN MAN WAN4️⃣其他分类方式 🕑OSI 和 TCP/IP 参考模型1️⃣OSI2️⃣TCP/IP🔴TCP/IP 参考模型对应协议 3️⃣OSI 和 TCP/IP 模型对应…

AUTOSAR_EXP_ARAComAPI的6章笔记(4)

☞返回总目录 相关总结:《AUTOSAR 自适应应用中原始数据流传输的使用方法》总结 6.4 原始数据流传输的使用方法 本章描述了原始数据流(RawDataStreams)在 AUTOSAR 自适应应用程序中的使用方法。 目前,原始数据流传输在单播 / …

WSL2-轻量级AI训练场景最佳生产环境

WSL2 只适用于 Win 10 、Win11 在运行 AI 软件、AI 模型训练,Linux 是最佳的操作系统。 在运行各种软件,如:Stable Diffusion Web UI 等,使用 Docker 容器运行也更方便后期的快速复用,同样的 Docker 容器在 Linux 中…

基于springboot的网上服装商城推荐系统的设计与实现

基于springboot的网上服装商城推荐系统的设计与实现 开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:idea 源码获取&#xf…

安灯系统助力汽车零部件工厂快速解决生产异常

在汽车零部件制造领域,高效的生产管理和快速解决异常情况是确保产品质量和生产进度的关键。而安灯系统的应用,正为汽车零部件工厂带来了全新的变革,助力其快速解决生产异常。 汽车零部件工厂的生产报工产线看板直观地反映出生产的各项关键数据…

基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“心灵治愈交流平台”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能界面图 登录、用户注册界面图 心灵专…

【有啥问啥】智能座舱中的儿童遗留检测(CPD,Child Presence Detection)技术详解

智能座舱中的儿童遗留检测(CPD,Child Presence Detection)技术详解 引言 儿童遗留检测(CPD,Child Presence Detection)系统是一项旨在保护儿童免受因被遗忘在车内而导致的热中暑危险的重要安全技术。近年…