【C++进阶】AVL树的实现

1. AVL的概念

  • AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AV树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
  • AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962 年的论⽂《An algorithm for the organization of information》中发表了它。
  • AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1,
  • AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。
  • 思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法作为⾼度差是0
  • AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 ,那么增删查改的效率也可以控制在 ,相⽐⼆叉搜索树有了本质的提升。

2. AVL树的实现

2.1 AVL树的结构 

template<class K, class V>
struct AVLTreeNode
{// 需要parent指针,后续更新平衡因⼦可以看到pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public://...
private:Node* _root = nullptr;
};

2.2 AVL树的插入

2.2.1 AVL树插入一个值的大概过程

  1. 插⼊⼀个值按⼆叉搜索树规则进行插⼊。
  2. 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新从新增结点->根结点路径上的平衡因子,实际中最坏情况下要更新到根,有些情况更新到中间就可以停⽌了,具体情况我们下⾯再详细分析。
  3. 更新平衡因⼦过程中没有出现问题,则插⼊结束
  4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插入结束。

2.2.2 平衡因子更新

更新原则:
  • 平衡因子 = 右⼦树⾼度-左子树⾼度
  • 只有⼦树⾼度变化才会影响当前结点平衡因子。
  • 插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在 parent的左子树,parent平衡因⼦--
  • parent所在子树的⾼度是否变化决定了是否会继续往上更新
更新停止条件:
  • 更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0 或者 1->0,说明更新前parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会影响parent的⽗亲结点的平衡因⼦,更新结束。
  • 更新后parent的平衡因⼦等于1 或 -1,更新前更新中parent的平衡因⼦变化为0->1 或者 0->-1,说明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所在的⼦树符合平衡要求,但是⾼度增加了1,会影响arent的⽗亲结点的平衡因⼦,所以要继续向上更新。
  • 更新后parent的平衡因⼦等于2 或 -2,更新前更新中parent的平衡因⼦变化为1->2 或者 -1->-2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不需要继续往上更新,插⼊结束。
更新到10结点,平衡因⼦为2,10所在的⼦树已经不平衡,需要旋转处理

更新到中间结点,3为根的子树高度不变,不会影响上⼀层,更新结束 

最坏更新到根停止  

2.2.3 插入结点及更新平衡因子的代码实现

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// 更新平衡因⼦while (parent){// 更新平衡因⼦if (cur == parent->_left)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0){// 更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 不平衡了,旋转处理break;}else{assert(false);}}return true;
}

2.3 旋转

2.3.1 旋转的原则

1. 保持搜索树的规则
2. 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度
旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。
说明:下⾯的图中,有些结点我们给的是具体值,如10和5等结点,这⾥是为了⽅便讲解,实际中是什么值都可以,只要⼤⼩关系符合搜索树的规则即可。

2.3.2 右单旋

  • 本图1展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/ 图5进⾏了详细描述。
  • 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要往右边旋转,控制两棵树的平衡。
  • 旋转核⼼步骤,因为5 < b⼦树的值 < 10,将b变成10的左⼦树,10变成5的右⼦树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

 图一

图二

图三

 图四

图五 

2.3.3 右单旋代码实现

void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;// 需要注意除了要修改孩⼦指针指向,还是修改⽗亲parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;// parent有可能是整棵树的根,也可能是局部的⼦树// 如果是整棵树的根,要修改_root// 如果是局部的指针要跟上⼀层链接if (parentParent == nullptr){_root = subL;subL->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;
}

2.3.4 左单旋

  • 本图6展示的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类似。
  • 在a子树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往左边旋转,控制两棵树的平衡。
  • 旋转核⼼步骤,因为10 < b⼦树的值 < 15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

2.3.5 左单旋代码实现

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if(subRL)subRL->_parent = parent;Node* parentParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (parentParent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;
}

2.3.6 左右双旋

通过图7和图8可以看到,左边⾼时,如果插⼊位置不是在a子树,而是插⼊在b⼦树,b⼦树⾼度从h变成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树这棵树就平衡了。

图7

图8

  • 图7和图8分别为左右双旋中h==0和h==1具体场景分析,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为8和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲5为旋转点进⾏左单旋,左单旋需要动b树中的左⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察8的平衡因⼦不同,这⾥我们要分三个场景讨论。
  • 场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1并为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为-1,旋转后8和5平衡因⼦为0,10平衡因⼦为1。
  • 场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为1,旋转后8和10平衡因⼦为0,5平衡因⼦为-1。
  • 场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因⼦,引发旋转,其中8的平衡因⼦为0,旋转后8和10和5平衡因⼦均为0。

图9 

2.3.7 左右双旋代码实现

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 0;}else if (bf == -1){subL->_bf = 0;subLR->_bf = 0;parent->_bf = 1;}else if(bf == 1){subL->_bf = -1;subLR->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

2.3.8 右左双旋

  • 跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL子树进行分析,另外我们需要把b⼦树的细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进行右单旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。
  • 场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。
  • 场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。
  • 场景3:h == 0时,a/b/c都是空树,b自己就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。

图10

2.3.9 右左双旋代码实现

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

2.4 AVL树的查找 

那⼆叉搜索树逻辑实现即可,搜索效率为 O(logN)
Node* Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;
}

2.5 AVL树平衡检测

我们实现的AVL树是否合格,我们通过检查左右⼦树⾼度差的的程序进⾏反向验证,同时检查⼀下结点的平衡因⼦更新是否出现了问题。
int _Height(Node* root)
{if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}bool _IsBalanceTree(Node* root)
{// 空树也是AVL树if (nullptr == root)return true;// 计算pRoot结点的平衡因⼦:即pRoot左右⼦树的⾼度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;// 如果计算出的平衡因⼦与pRoot的平衡因⼦不相等,或者// pRoot平衡因⼦的绝对值超过1,则⼀定不是AVL树if (abs(diff) >= 2){cout << root->_kv.first << "⾼度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因⼦异常" << endl;return false;}// pRoot的左和右如果都是AVL树,则该树⼀定是AVL树return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}// 测试代码
void TestAVLTree1()
{AVLTree<int, int> t;// 常规的测试⽤例//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };// 特殊的带有双旋场景的测试⽤例int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){t.Insert({ e, e });}t.InOrder();cout << t.IsBalanceTree() << endl;
}// 插⼊⼀堆随机值,测试平衡,顺便测试⼀下⾼度和性能等
void TestAVLTree2()
{const int N = 100000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand()+i);}size_t begin2 = clock();AVLTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t end2 = clock();cout << "Insert:" << end2 - begin2 << endl;cout << t.IsBalanceTree() << endl;cout << "Height:" << t.Height() << endl;cout << "Size:" << t.Size() << endl;size_t begin1 = clock();// 确定在的值/*for (auto e : v){t.Find(e);}*/// 随机值for (size_t i = 0; i < N; i++){t.Find((rand() + i));}size_t end1 = clock();cout << "Find:" << end1 - begin1 << endl;
}

2.6 AVL树的删除

AVL树的删除本章节不做讲解,有兴趣的同学可参考:《殷人昆 数据结构:用面向对象⽅法与C++语言描述》中讲解。

本文介绍了AVL树如何实现的相关知识,欢迎评论留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56556.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SLM201A系列24V, 15mA - 60mA单通道线性恒流LED驱动芯片 灯带灯条解决方案

SLM201A系列型号&#xff1a; SLM201A15aa-7G SLM201A20aa-7G SLM201A25aa-7G SLM201A30aa-7G SLM201A35aa-7G SLM201A40aa-7G SLM201A45aa-7G SLM201A50aa-7G SLM201A55aa-7G SLM201A60aa-7G SLM201A 系列产品是用于产生单通道、高…

基于FPGA的以太网设计(一)

以太网简介 以太网&#xff08;Ethernet&#xff09;是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准&#xff0c;它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术&#xff0c;取代了其他局域网标准如…

【unity小技巧】Unity6 LTS版本安装和一些修改和新功能使用介绍

文章目录 前言安装新功能变化1、官方推荐使用inputsystem进行输入控制2、修复了InputSystem命名错误导致listen被遮挡的bug3、自带去除unity启动画面logo功能4、unity官方的behavior行为树插件5、linearVelocity代替过时的velocity方法待续 完结 前言 2024/10/17其实unity就已…

gitlab:ssh设置

我用的是window&#xff0c;先打开终端&#xff1a; 1、输入 ssh-skygen 执行 然后输入路径&#xff0c;路径地址就是后面括号内的内容 2、然后直接下一步下一步即可&#xff0c;像上面那样就成了 3、打开公钥&#xff0c;复制 4、打开gitlab&#xff0c;在我的 Edit profil…

JUnit 单元测试(详解)

&#x1f680; 个人简介&#xff1a;某大型国企资深软件开发工程师&#xff0c;信息系统项目管理师、CSDN优质创作者、阿里云专家博主&#xff0c;华为云云享专家&#xff0c;分享前端后端相关技术与工作常见问题~ &#x1f49f; 作 者&#xff1a;码喽的自我修养&#x1f9…

shell脚本宝藏仓库(基础命令、正则表达式、shell基础、变量、逻辑判断、函数、数组)

一、shell概述 1.1 shell是什么 Shell是一种脚本语言 脚本&#xff1a;本质是一个文件&#xff0c;文件里面存放的是特定格式的指令&#xff0c;系统可以使用脚本解析器、翻译或解析指令并执行&#xff08;shell不需要编译&#xff09; Shell既是应用程序又是一种脚本语言&…

C++中类间相互引用与析构函数调用的潜在风险及解决方案

C中类间相互引用与析构函数调用的潜在风险及解决方案 一、前言二、举例说明三、问题分析四、解决方案 一、前言 在C中&#xff0c;当两个类A和B之间存在相互引用&#xff0c;并且在A的析构函数中调用B的成员函数&#xff0c;同时B的成员函数又尝试访问A的对象或调用A的成员函数…

《深度学习》Dlib、OpenCV 轮廓绘制

目录 一、Dlib轮廓绘制 1、什么是轮廓绘制 2、步骤 1&#xff09;导入所需的库和模型 2&#xff09;加载人脸检测器 3&#xff09;读取图像 4&#xff09;人脸检测 5&#xff09;关键点定位 6&#xff09;绘制轮廓线条 7&#xff09;展示结果 二、案例实现 1、完整代码 运…

【华为】静态NAT、动态NAT、NAPT、Easy IP、NAT Server

静态 NAT&#xff1a;将内网主机的私网 IP地址一对一映射到公网 IP 地址。动态 NAT&#xff1a;将内网主机的私有地址转换为公网地址池里面的地址。由于静态NAT严格地一对一进行地址映射&#xff0c;这就导致即便内网主机长时间离线或者不发送数据时&#xff0c;与之对应的公有…

Mac 电脑安装redis

1、首先检查电脑是否安装 brew 命令&#xff1a; #打开Mac自带的终端&#xff0c;输入下面命令 brew --version如下图&#xff0c;可以看到我的 brew 正常的&#xff0c;且对应版本是4.0.17-63-g32f2258 如果你的电脑执行上面命名报错&#xff1a;zsh: command not found: br…

一个很恶心但发顶会很牛的方向!【小样本学习+目标检测】

【小样本学习目标检测】致力于通过有限的标注样本实现高效的目标检测&#xff0c;以应对数据匮乏的挑战。这一领域的研究对于缩小人工智能与人类学习系统之间的差异、增强模型对新类别的适应能力、推动智能识别系统在实际场景中的应用具有重要意义。 为了帮助研究人员深入理解…

【可答疑】基于51单片机的智能衣柜(含仿真、代码、报告、演示视频等)

✨哈喽大家好&#xff0c;这里是每天一杯冰美式oh&#xff0c;985电子本硕&#xff0c;大厂嵌入式在职0.3年&#xff0c;业余时间做做单片机小项目&#xff0c;有需要也可以提供就业指导&#xff08;免费&#xff09;~ &#x1f431;‍&#x1f409;这是51单片机毕业设计100篇…

多进程编辑

使用父子进程完成两个文件的拷贝&#xff0c;父进程拷贝前一半&#xff0c;子进程拷贝后一半&#xff0c;两个进程同时进行 #include <myhead.h> int main(int argc, const char *argv[]) {//用于保存pid号pid_t pid -1;//创建子进程pid fork();//打印一下进程号print…

C语言 | Leetcode C语言题解之第491题非递减子序列

题目&#xff1a; 题解&#xff1a; int** ans; int ansSize; int* temp; int tempSize;void dfs(int cur, int last, int* nums, int numsSize, int** returnColumnSizes) {if (cur numsSize) {if (tempSize > 2) {ans[ansSize] malloc(sizeof(int) * tempSize);memcpy(…

oracle归档日志爆满问题处理

最近客户单位的oracle数据库出了问题&#xff0c;经常出现无法连接,报错提示 ORA-00257: archiver error, Connect internal only, until freed.&#xff0c;手动清除归档日志后可以恢复访问&#xff0c;但是过不了几天依旧会爆满&#xff0c;每日生成的归档日志很大。经过详细…

(K)MP有限状态自动机

模式匹配自动机 什么是有限状态自动机&#xff1f; 定义 n 个不同状态&#xff0c;记为 {1,2…n}&#xff0c;在状态 i 时输入 s&#xff0c;达到状态 j&#xff0c;记为 goto (i,s)j 对于字符串 s 而言&#xff0c;在一个状态 i 下输入一个字符 ch&#xff0c;也会达到一个指…

ssh连接慢的问题或zookeeper远程连接服务超时

问题原因&#xff1a; 在SSH登录过程中&#xff0c;服务器会通过反向DNS查找客户端的主机名&#xff0c;然后与登录的IP地址进行匹配&#xff0c;以验证登录的合法性。如果客户端的IP没有域名或DNS服务器响应缓慢&#xff0c;这可能导致SSH登录过慢。为了解决这个问题&#xf…

尤雨溪都打赏的虚拟列表组件,到底有多强

尤雨溪都打赏的虚拟列表组件&#xff0c;到底有多强&#xff1f; 在前端开发中&#xff0c;性能优化永远是绕不开的主题。今天就带你看看 vue-virtual-scroller&#xff0c;一款让你滚动页面时流畅得像火箭一样的 Vue 组件。本文将简单介绍这个组件的主要功能、技术特点&#x…

JavaWeb合集07-MyBatis

七、MyBatis MyBatis是一款优秀的持久层&#xff08;dao&#xff09;框架&#xff0c;用于简化JDBC的开发。 MyBatis本是Apache的一个开源项目iBatis, 2010年这个项目由apache迁移到了google code,并且改名为MyBatis。2013年11月迁移到Github。 官网&#xff1a;https://mybati…

Axure重要元件三——中继器查询和统计

亲爱的小伙伴&#xff0c;在您浏览之前&#xff0c;烦请关注一下&#xff0c;在此深表感谢&#xff01; 本节课&#xff1a;中继器查询页数 课程内容&#xff1a;查询中继器页面、自动统计页数、自动统计数据条数、上一页下一页 应用场景&#xff1a;表单的查询、表单的基本…