磁盘存储链式结构——B树与B+树

        红黑树处理数据都是在内存中,考虑的都是内存中的运算时间复杂度。如果我们要操作的数据集非常大,大到内存已经没办法处理了该怎么办呢?
        试想一下,为了要在一个拥有几十万个文件的磁盘中查找一个文本文件,设计的算法需要读取磁盘(磁盘寻址)上万次还是读取几十次,这是有本质差异的,此时为了降低对外存设备的访问次数,我们就需要新的数据结构来处理这样的问题,B树B+树(n叉树)。

B树、B+树的本质是通过降低树的层高,减少对磁盘访问次数,来提升查询速度,查找复杂度logm(n/m),m是叉的数量

B树与B+树区别与联系

  1. B树所有节点即存储key也存储value,内存中存不下后存磁盘,名称为B-Tree,并没有B-树这种叫法
  2. B+树只有在叶子节点存储数据value(叶子节点放在磁盘中),非叶子节点用来做索引key(非叶子结点在内存中),相比于B树,B+树更适合做磁盘索引,在大数据的存储和查找中使用较多,比如海量图像查找引擎
  3. B树和B+树的结点添加、删除、查询基本相同

B树的性质

  • 每个结点最多有m棵子树。
  • 具有k个子树的非叶结点包含k -1个键。
  • 每个非叶子结点(除了根)具有至少⌈ m/2⌉子树,即最少有⌈ m/2⌉-1个关键字。
  • 如果根不是终端结点,则根结点至少有一个关键字,即至少有2棵子树。【根的关键字取值范围是[1,m-1],子树的取值范围是[2,m]】
  • 所有叶子结点都出现在同一水平,没有任何信息(高度一致)。

B+树的性质

每个结点最多有m棵子树。
如果根不是终端结点,则根结点至少有一个关键字,即至少有2棵子树。【根的关键字取值范围是[1,m-1]】
每个关键字对应一棵子树(与B树的不同),具有k个子树的非叶结点包含k 个键。
每个非叶子结点(除了根)具有至少**⌈ m/2⌉子树**,即最少有**⌈m/2⌉个关键字**。
终端结点包含全部关键字及相应记录的指针,叶结点中将关键字按大小顺序排序,并且相邻叶结点按大小顺序相互链接起来。
所有分支结点(可以视为索引的索引)中金包含他的各个子节点(即下一级的索引块)中关键字最大值,及指向其子结点的指针。

B树与B+树对比

  • 在B+树中,叶结点包含信息,所有非叶结点仅起索引作用,非叶子结点中的每个索引项只是包含了对应子树最大关键字和指向该孩子树的指针,不含有该关键字对应记录的存储地址。
  • 在B+树中,终端结点包含全部关键字及相应记录的指针,即非终端结点出现过的关键字也会在这重复出现一次。而B树是不重复的

一、B树的定义

我们以六叉树为例:我们说的6叉树是指,每个节点最多可拥有的子树个数,6叉树每个节点最多可拥有6颗子树,而每个节点中最多存储5个数据,如下图

至于为什么插入后会是如下图形,如何插入,请观看下面b站视频。

B树(B-树) - 来由, 定义, 插入, 构建_哔哩哔哩_bilibili

//6叉树的定义
#define SUB_M   3struct _btree_node{/*int keys[2 * SUB_M-1];      //最多5个关键字struct _btree_node *childrens[2 * SUB_M];   //最多6颗子树    6叉树*/int *keys;      //5struct _btree_node **childrens;   //6int num;    //实际存储的节点数量 <= M-1int leaf;   //是否为叶子节点
}struct _btree {struct _btree_node *root;
}

二、B树添加结点

B树添加结点,只会添加在叶子结点上,重点是结点满了后,会发生分裂并向父结点上位。

  • 添加的数据都是添加在叶子节点上,不会添加到根节点或中间节点

  • 结点数据个数==M-1(结点满了的情况),发生分裂(把(M-1)/2处数据放到父结点,其他数据分成两个结点)

     

  • 添加U,高度+1


添加结点代码如下:

/*用于结点分裂时创建新结点*/
btree_node *btree_create_node(int leaf){btree_node *node = (btree_node*)calloc(1, sizeof(btree_node));  //malloc需要手动清零,calloc会自动清零,set 0if(node == NULL) return NULL;   //在内存分配的时候一定要判断,当内存不够用的时候,malloc/calloc就会出错node->leaf = leaf;node->keys = calloc(2 * SUB_M -1, sizeof(int));node->childrens = (btree_node**)calloc(2 * SUB_M -1, sizeof(btree_node*));node->num = 0;return node;
}/*删除结点*/
void btree_destory_node(btree_node *node){free(node->childrens);free(node->keys);free(node);
}/*
非根结点分裂、上位:发生在B树添加元素的过程中,结点满了,需要先分裂再添加
btree *T:根节点
btree_node *x:被删除元素的父结点
int idx:位于父结点的第几颗子树
*/
void btree_split_child(btree *T, btree_node *x, int idx){btree_node *y = x->childrens[idx];    //满了的结点node_ybtree_node *z = btree_create_node(y->leaf); //创建分裂后的新结点//zz->num = SUB_M - 1;int i=0;for(i=0; i < SUB_M-1; i++){z->keys[i] = y->keys[SUB_M+i];}if(y->leaf == 0){   //inner 是内结点,子树指针也要copy过去for(i=0; i < SUB_M-1; i++){z->childrens[i] = y->childrens[SUB_M+i];}}//yy->num = SUB_M;//中间元素上位//childrens 子树for(i=x->num; i >= idx+1; i--){             //寻找上为父结点的位置x->childrens[i+1] = x->childrens[i];    //父结点元素后移}x->childrens[i+1] = z;//key   for(i=x->num-1; i >= idx; i--){     //寻找上为父结点的位置x->keys[i+1] = x->keys[i];      //父结点后边元素后移 }x->keys[i] = y->keys[SUB_M];x->num += 1;
}/**/
void btree_insert(btree *T, int key){btree_node *r = T->root;//根节点分裂(根节点满了);创建一个空结点 指向root, if(r->num == 2*SUB_M-1){btree_node *node = btree_create_node(0);T->root = node;node->childrens[0] = r;btree_split_child(T, node, 0);}
}

三、B树删除结点

B树删除结点,删除叶子结点和中间结点类似,重点为向父结点借位再合并操作。

  • 先合并或者借位转换成一个B树可以删除的状态,在进行删除


删除B结点,其中路径中间结点“FI”的关键字数量为(M-1)/2-1个,为了避免以后出现资源不足的现象,需要对"FI"先进行借位合并
 


代码如下:

///b树 删除     void btree_merge(btree *T, btree_node *x, int idx){btree_node *left = x->childrens[idx];btree_node *right = x->childrens[idx+1];left->keys[left->num] = x->keys[idx];int i=0;for(i=0; i<right->num; i++){left->keys[SUB_M+i] = right->keys[i];}if(!left->leaf){    //非叶子结点,要合并孩子结点指针for(i=0; i<SUB_M; i++){left->childrens[SUB_M+i] = right->childrens[i];}}left->num += SUB_M;btree_destory_node(right);//x key前移for(i=idx+1; i < x->num; i++){x->keys[i-1] = x->keys[i];x->childrens[i] = x->childrens[i+1];}
}

四、完整代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>#define DEGREE		3
typedef int KEY_VALUE;typedef struct _btree_node {KEY_VALUE* keys;struct _btree_node** childrens;int num;int leaf;
} btree_node;typedef struct _btree {btree_node* root;int t;
} btree;btree_node* btree_create_node(int t, int leaf) {btree_node* node = (btree_node*)calloc(1, sizeof(btree_node));if (node == NULL) assert(0);node->leaf = leaf;node->keys = (KEY_VALUE*)calloc(1, (2 * t - 1) * sizeof(KEY_VALUE));node->childrens = (btree_node**)calloc(1, (2 * t) * sizeof(btree_node*));node->num = 0;return node;
}void btree_destroy_node(btree_node* node) {assert(node);free(node->keys);//free(node->childrens);free(node);
}void btree_create(btree* T, int t) {T->t = t;btree_node* x = btree_create_node(t, 1);T->root = x;
}void btree_split_child(btree* T, btree_node* x, int i) {int t = T->t;btree_node* y = x->childrens[i];btree_node* z = btree_create_node(t, y->leaf);z->num = t - 1;int j = 0;for (j = 0; j < t - 1; j++) {z->keys[j] = y->keys[j + t];}if (y->leaf == 0) {for (j = 0; j < t; j++) {z->childrens[j] = y->childrens[j + t];}}y->num = t - 1;for (j = x->num; j >= i + 1; j--) {x->childrens[j + 1] = x->childrens[j];}x->childrens[i + 1] = z;for (j = x->num - 1; j >= i; j--) {x->keys[j + 1] = x->keys[j];}x->keys[i] = y->keys[t - 1];x->num += 1;}void btree_insert_nonfull(btree* T, btree_node* x, KEY_VALUE k) {int i = x->num - 1;if (x->leaf == 1) {while (i >= 0 && x->keys[i] > k) {x->keys[i + 1] = x->keys[i];i--;}x->keys[i + 1] = k;x->num += 1;}else {while (i >= 0 && x->keys[i] > k) i--;if (x->childrens[i + 1]->num == (2 * (T->t)) - 1) {btree_split_child(T, x, i + 1);if (k > x->keys[i + 1]) i++;}btree_insert_nonfull(T, x->childrens[i + 1], k);}
}void btree_insert(btree* T, KEY_VALUE key) {//int t = T->t;btree_node* r = T->root;if (r->num == 2 * T->t - 1) {btree_node* node = btree_create_node(T->t, 0);T->root = node;node->childrens[0] = r;btree_split_child(T, node, 0);int i = 0;if (node->keys[0] < key) i++;btree_insert_nonfull(T, node->childrens[i], key);}else {btree_insert_nonfull(T, r, key);}
}void btree_traverse(btree_node* x) {int i = 0;for (i = 0; i < x->num; i++) {if (x->leaf == 0)btree_traverse(x->childrens[i]);printf("%C ", x->keys[i]);}if (x->leaf == 0) btree_traverse(x->childrens[i]);
}void btree_print(btree* T, btree_node* node, int layer)
{btree_node* p = node;int i;if (p) {printf("\nlayer = %d keynum = %d is_leaf = %d\n", layer, p->num, p->leaf);for (i = 0; i < node->num; i++)printf("%c ", p->keys[i]);printf("\n");
#if 0printf("%p\n", p);for (i = 0; i <= 2 * T->t; i++)printf("%p ", p->childrens[i]);printf("\n");
#endiflayer++;for (i = 0; i <= p->num; i++)if (p->childrens[i])btree_print(T, p->childrens[i], layer);}else printf("the tree is empty\n");
}int btree_bin_search(btree_node* node, int low, int high, KEY_VALUE key) {int mid;if (low > high || low < 0 || high < 0) {return -1;}while (low <= high) {mid = (low + high) / 2;if (key > node->keys[mid]) {low = mid + 1;}else {high = mid - 1;}}return low;
}//{child[idx], key[idx], child[idx+1]} 
void btree_merge(btree* T, btree_node* node, int idx) {btree_node* left = node->childrens[idx];btree_node* right = node->childrens[idx + 1];int i = 0;/data mergeleft->keys[T->t - 1] = node->keys[idx];for (i = 0; i < T->t - 1; i++) {left->keys[T->t + i] = right->keys[i];}if (!left->leaf) {for (i = 0; i < T->t; i++) {left->childrens[T->t + i] = right->childrens[i];}}left->num += T->t;//destroy rightbtree_destroy_node(right);//node for (i = idx + 1; i < node->num; i++) {node->keys[i - 1] = node->keys[i];node->childrens[i] = node->childrens[i + 1];}node->childrens[i + 1] = NULL;node->num -= 1;if (node->num == 0) {T->root = left;btree_destroy_node(node);}
}void btree_delete_key(btree* T, btree_node* node, KEY_VALUE key) {if (node == NULL) return;int idx = 0, i;while (idx < node->num && key > node->keys[idx]) {idx++;}if (idx < node->num && key == node->keys[idx]) {if (node->leaf) {for (i = idx; i < node->num - 1; i++) {node->keys[i] = node->keys[i + 1];}node->keys[node->num - 1] = 0;node->num--;if (node->num == 0) { //rootfree(node);T->root = NULL;}return;}else if (node->childrens[idx]->num >= T->t) {btree_node* left = node->childrens[idx];node->keys[idx] = left->keys[left->num - 1];btree_delete_key(T, left, left->keys[left->num - 1]);}else if (node->childrens[idx + 1]->num >= T->t) {btree_node* right = node->childrens[idx + 1];node->keys[idx] = right->keys[0];btree_delete_key(T, right, right->keys[0]);}else {btree_merge(T, node, idx);btree_delete_key(T, node->childrens[idx], key);}}else {btree_node* child = node->childrens[idx];if (child == NULL) {printf("Cannot del key = %d\n", key);return;}if (child->num == T->t - 1) {btree_node* left = NULL;btree_node* right = NULL;if (idx - 1 >= 0)left = node->childrens[idx - 1];if (idx + 1 <= node->num)right = node->childrens[idx + 1];if ((left && left->num >= T->t) ||(right && right->num >= T->t)) {int richR = 0;if (right) richR = 1;if (left && right) richR = (right->num > left->num) ? 1 : 0;if (right && right->num >= T->t && richR) { //borrow from nextchild->keys[child->num] = node->keys[idx];child->childrens[child->num + 1] = right->childrens[0];child->num++;node->keys[idx] = right->keys[0];for (i = 0; i < right->num - 1; i++) {right->keys[i] = right->keys[i + 1];right->childrens[i] = right->childrens[i + 1];}right->keys[right->num - 1] = 0;right->childrens[right->num - 1] = right->childrens[right->num];right->childrens[right->num] = NULL;right->num--;}else { //borrow from prevfor (i = child->num; i > 0; i--) {child->keys[i] = child->keys[i - 1];child->childrens[i + 1] = child->childrens[i];}child->childrens[1] = child->childrens[0];child->childrens[0] = left->childrens[left->num];child->keys[0] = node->keys[idx - 1];child->num++;node->keys[idx - 1] = left->keys[left->num - 1];left->keys[left->num - 1] = 0;left->childrens[left->num] = NULL;left->num--;}}else if ((!left || (left->num == T->t - 1))&& (!right || (right->num == T->t - 1))) {if (left && left->num == T->t - 1) {btree_merge(T, node, idx - 1);child = left;}else if (right && right->num == T->t - 1) {btree_merge(T, node, idx);}}}btree_delete_key(T, child, key);}}int btree_delete(btree* T, KEY_VALUE key) {if (!T->root) return -1;btree_delete_key(T, T->root, key);return 0;
}int main() {btree T = { 0 };btree_create(&T, 3);srand(48);int i = 0;char key[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";for (i = 0; i < 26; i++) {//key[i] = rand() % 1000;printf("%c ", key[i]);btree_insert(&T, key[i]);}btree_print(&T, T.root, 0);for (i = 0; i < 26; i++) {printf("\n---------------------------------\n");btree_delete(&T, key[25 - i]);//btree_traverse(T.root);btree_print(&T, T.root, 0);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dockerfile 详解

Dockerfile是自定义Docker镜像的一套规则&#xff0c;由多条指令构成&#xff0c;每条指令都会对应于Docker镜像中的每一层&#xff0c;因为Docker是分层存储的。以下是Dockerfile中各个参数的详解及演示解析&#xff1a; 1. FROM 功能&#xff1a;指定待扩展的父级镜像&#…

Lumerical脚本语言——材料数据库(Material database)

下面的命令用来在材料数据库添加或者拷贝材料&#xff0c;以及设置材料属性&#xff0c;并在任何频率验证给定材料所得到的复反射率。&#xff08;通过简单地对反射率开方就可以得到介电常数&#xff09;。本部分同 INTERCONNECT 不相关。 命令描述 addmaterial 向材料数据库添…

在 Linux 系统中设置 Service 服务开机自启的详细指南

目录 在 Linux 系统中设置 Service 服务开机自启的详细指南一、Linux 服务管理概述二、systemd 中设置服务开机自启2.1 systemd 介绍2.2 如何检查服务的状态2.3 启用服务开机自启2.4 手动启动和停止服务2.5 检查服务是否成功启用2.6 禁用开机自启服务 三、在 sysvinit 中设置服…

sass学习笔记(1.0)

1.使用变量 sass可以像声明变量那样进行使用&#xff0c;这样同样的样式&#xff0c;就可以使用相同的变量来提高复用。 语法为&#xff1a;$ 变量名 在界面中也可以正常的显示 当然了&#xff0c;变量之间也可以相互引用&#xff0c;比如下面 div{$_color: #d45387;$BgColo…

用C++编写信息管理系统(歌单信息管理)

C语言是面向过程的编程语言&#xff0c;而C是面向对象的编程语言&#xff0c;在书写代码时风格有所不同&#xff08;也存在很多共性&#xff09;。 程序说明 本次系统程序使用的是C语言进行编写&#xff0c;主要考虑怎么实现面向对象的问题。 因为本次程序属于小型系统程序&…

多元线性回归:机器学习中的经典模型探讨

引言 多元线性回归是统计学和机器学习中广泛应用的一种回归分析方法。它通过分析多个自变量与因变量之间的关系&#xff0c;帮助我们理解和预测数据的行为。本文将深入探讨多元线性回归的理论背景、数学原理、模型构建、技术细节及其实际应用。 一、多元线性回归的背景与发展…

在Ubuntu上安装Docker以及使用

文章目录 一、安装Docker二、启动与测试Docker三、设置Docker自动启动四、添加Docker用户组&#xff08;可选&#xff09;五、Docker的常用命令六、Docker容器的使用 以下是在Ubuntu上安装Docker以及使用的详细教程&#xff1a; 一、安装Docker 更新软件包索引 在安装Docker之前…

2024免费mac苹果电脑清理垃圾软件CleanMyMac X4.15.8

对于苹果电脑用户来说&#xff0c;设备上积累的垃圾文件可能会导致存储空间变得紧张&#xff0c;影响电脑的性能和使用体验。尤其是那些经常下载和安装新应用、编辑视频或处理大量照片的用户&#xff0c;更容易感受到存储空间的压力。面对这种情况&#xff0c;寻找一种有效的苹…

在 Spring 容器初始化 Bean 时,通过反射机制处理带有自定义 注解的字段,并将其注入相应的 Spring 管理的 Bean

背景:我们之前项目用的自己研发的框架,后来又要重构,但是有些功能还依赖于之前的框架,万不得已的情况下,我就把之前的框架当成三方的依赖给引入,引入以后就发现,很多类上用了Inject这个注解,再一看包名竟然是自定义的,这几个类就是无法注入到spring中,用了好多种方法,使用的时候…

计组_中断响应的步骤

2024.10.13&#xff1a;计算机组成原理学习笔记 中断响应步骤 中断响应 &#xff08;中断响应的过程也称中断隐指令&#xff09;第一步&#xff1a;关中断第二步&#xff1a;保存断点第三步&#xff1a;引出中断服务程序中断源识别判优方法1&#xff1a;软件查询方法中断源识别…

【面经】保融笔试

一共十二面&#xff0c;题目比较基础&#xff0c;20分主观题40分不定项选择20分SQL20分手写编程 主观题 问奖学金&#xff0c;别人对自己的评价和自己的看法&#xff0c;自己最大的优缺点&#xff0c;期望工作地点以及对出差的看法 不定项选择&#xff1a; 第一部分是计算机…

74.【C语言】文件操作(1)

目录 1.进行文件操作的原因 销毁的示例 2.文件的类型 1.操作文件的步骤 2.文件名 3.查看文件路径的方法 方法1 方法2 方法3 4.数据文件的介绍 举例 ① ASCII码的形式(即字符形式)存储 ②二进制形式存储 理解"不加转换"的含义 1.进行文件操作的原因 为…

maven加载依赖成功但是引入import不了包,注解报错

突然就复现不出来了&#xff0c;奇了怪了&#xff0c;简单说一下吧&#xff0c;就是模块里引入了SpringBoot Test那个依赖然后&#xff0c; 这个地方是显示引入成功的&#xff0c;但是 这个包下没有&#xff0c;导致我SpringBootTest一直出不来&#xff0c;就找不到这个包下的注…

Qt事件——鼠标事件

通过label来显示各种事件 鼠标按下事件 //按下显示坐标 void MyLabel::mousePressEvent(QMouseEvent * ev) {int i ev->x();int j ev->y();//判断按下的鼠标键位if (ev->button() Qt::LeftButton) {qDebug() << "LeftButton";}else if (ev->bu…

Elasticsearch学习笔记(六)使用集群令牌将新加点加入集群

随着业务的增长&#xff0c;陆续会有新的节点需要加入集群。当我们在集群中的某个节点上使用命令生成令牌时会出现报错信息。 # 生成令牌 /usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s node出现报错信息&#xff1a; Unable to create enrollment…

计算机等级考试——二级MSOffice高级应用考试常用函数

二级MSOffice高级应用考试常用函数 使用说明&#xff1a;本文共介绍了在二级 MSOffice 高级应用考试过程中考到的 6 类共 51 个函数&#xff0c;在学习过程建议打开Excel 工作表【公式】-【函数库】&#xff0c;边操作边学习&#xff0c;更易于理解中每个函数参数意义。 一、 …

开源商城系统crmeb phpstudy安装配置

BOSS让我最快时间部署一套开源商场系统&#xff0c;今天就以crmeb为例。 快速部署在linux中我会首选docker&#xff0c;因为我要在windows中部署&#xff0c;本文就选用phpstudy集成环境做了。 什么是crmeb 我从官网摘点&#xff1a; CRMEB产品与服务 CRMEB通过将CRM&#x…

基于STOMP 协议的 WebSocket 实现传输长字符串方案

为了通过 STOMP 协议的 WebSocket 实现传输长字符串&#xff08;如超过 1MB 的消息&#xff09;&#xff0c;我们需要从前端到后端的多个方面进行配置和优化&#xff0c;包括心跳检测、消息分块、Tomcat 超时设置等。以下是一个完整的方案&#xff0c;涵盖前端和后端的配置&…

NFT Insider #151:The Sandbox 推出 Alpha 第4季;腾讯或将收购育碧

市场数据 加密艺术及收藏品新闻 Beeple 将于 11 月在南京德基美术馆举办个人首展 著名数字艺术家 Beeple 近日在X平台发布视频&#xff0c;宣布将于 2024 年 11 月 14 日在南京德基美术馆举办个人首次展览&#xff0c;名为《Beeple&#xff1a;来自合成未来的故事》。该展览将…