[自然语言处理]RNN

1 传统RNN模型与LSTM

import torch
import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型
def dem01():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加输入的sequence_length
def dem02():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加隐藏层的个数
def dem03():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 2)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:一个一个地向模型输入单词-全零初始化
def dem04_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.zeros(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.zeros(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-全一初始化
def dem04_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.ones(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.ones(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-随机初始化
def dem04_3():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.randn(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.randn(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:设置batch_first=True
def dem05():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1, batch_first=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(3, 4, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:基础LSTM模型
def dem06_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(2, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')# todo:双向LSTM模型
def dem06_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2,bidirectional=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(4, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(4, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')if __name__ == '__main__':# dem01()# dem02()# dem03()# dem04_1()# dem04_2()# dem04_3()# dem05()# dem06_1()dem06_2()
D:\nlplearning\nlpbase\python.exe D:\nlpcoding\rnncode.py 
output tensor([[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<MkldnnRnnLayerBackward0>)
hn tensor([[[ 0.1501, -0.2106,  0.0213,  0.1309,  0.3074, -0.2038],[ 0.3639, -0.0394, -0.1912,  0.1282,  0.0369, -0.1094],[ 0.1217, -0.0517,  0.1884, -0.1100, -0.5018, -0.4512]],[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<StackBackward0>)
cn tensor([[[ 0.2791, -0.7362,  0.0501,  0.2612,  0.4655, -0.2338],[ 0.7902, -0.0920, -0.4955,  0.3865,  0.0868, -0.1612],[ 0.2312, -0.3736,  0.4033, -0.1386, -1.0151, -0.5971]],[[ 0.0441, -0.2279, -0.1483,  0.3397, -0.5597, -0.4339],[ 0.2154,  0.4119,  0.4723,  0.4731, -0.0284, -1.1095],[-0.5016, -0.5146, -0.4286,  1.5299,  0.5992,  0.1224]]],grad_fn=<StackBackward0>)Process finished with exit code 0

2 GRU

import torch
import torch.nn as nn# todo:基础GRU
def dem01():gru = nn.GRU(5, 6, 1)input = torch.randn(4, 3, 5)h0 = torch.randn(1, 3, 6)output, hn = gru(input, h0)print(f'output {output}')print(f'hn {hn}')if __name__ == '__main__':dem01()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/55998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物联网:一种有能力重塑世界的技术

物联网&#xff08;IoT&#xff09;近年来对我们的日常生活产生了如此积极的影响&#xff0c;以至于即使是不懂技术的人也开始相信它所带来的便利以及敏锐的洞察力。 物联网是一场数字技术革命&#xff0c;其意义甚至比工业革命更为重大。物联网是仍处于起步阶段的第四次工业革…

前端开发笔记--html 黑马程序员2

文章目录 前端常用标签一、标题标签二、段落标签和换行标签和水平线标签三、文本格式化标签![请添加图片描述](https://i-blog.csdnimg.cn/direct/87583fa23fe04229b016912051f3fc45.png)四、盒子标签五、图像标签六、连接标签七、注释和特殊字符 八、表格标签的基本使用九、列…

自动化运维:提升效率、降低风险的利器

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

如何批量从sql语句中提取表名

简介 使用的卢易表 的提取表名功能&#xff0c;可以从sql语句中批量提取表名。采用纯文本sql语法分析&#xff0c;无需连接数据库&#xff0c;支持从含非sql语句的文件文件中提取&#xff0c;支持各类数据库sql语法。 特点 快&#xff1a;从成百个文件中提取上千个表名只需1…

离岗睡岗预警系统 值班室离岗识别系统Python 结合 OpenCV 库

在众多工作场景中&#xff0c;存在着一些特殊岗位&#xff0c;这些岗位对于人员的专注度和警觉性有着极高的要求。然而&#xff0c;离岗睡岗现象却时有发生&#xff0c;给工作的正常开展和安全保障带来了严重的威胁。本文将深入探讨特殊岗位离岗睡岗的危害&#xff0c;以及如何…

Ubuntu安装Apache教程

系统版本&#xff1a;Ubuntu版本 23.04 Ubuntu是一款功能强大且用户友好的操作系统&#xff0c;而Apache是一款广泛使用的Web服务器软件。在Ubuntu上安装Apache可以帮助用户搭建自己的网站或者进行Web开发。为大家介绍如何在Ubuntu上安装Apache&#xff0c;并提供详细的教程和操…

【HarmonyOS NEXT】实现页面水印功能

关键词&#xff1a;鸿蒙、水印、Watermark、页面、触摸问题 注&#xff1a;本期文章同样适用 OpenHarmony 的开发 在app开发过程中时常会出现敏感信息页面&#xff0c;为保护信息安全和及时的数据追踪&#xff0c;通常会采用给页面加水印的形式&#xff0c;那么本期文章会介绍…

【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章

目录 &#x1f354; 注意力机制介绍 1.1 注意力概念 1.2 注意力计算规则 1.3 常见的注意力计算规则 &#x1f354; 什么是注意力机制 &#x1f354; 注意力机制的作用 &#x1f354; 注意力机制实现步骤 4.1 步骤 4.2 代码实现 &#x1f354; 小结 学习目标 &#x1…

C++面试速通宝典——24

452. Linux进程地址空间 文本段&#xff1a;包含程序的可执行代码初始化数据段&#xff08;数据段&#xff09;&#xff1a;包含已初始化的全局变量和静态变量。未初始化数据段&#xff08;BSS段&#xff09;&#xff1a;包含未初始化的全局变量和静态变量。堆&#xff1a;动态…

计算机网络(十一) —— 数据链路层

目录 一&#xff0c;关于数据链路层 二&#xff0c;以太网协议 2.1 局域网 2.2 Mac地址 2.3 Mac帧报头 2.4 MTU 三&#xff0c;ARP协议 3.1 ARP是什么 3.2 ARP原理 3.3 ARP报头 3.4 模拟ARP过程 3.5 ARP周边问题 四&#xff0c;NAT技术 4.1 NAT技术背景 4.2 NAT转…

C++11--右值引用

1.引用 右值引用是在C11中所引进的&#xff0c;在前面&#xff0c;我们已经了解并使用过了引用&#xff0c;引用的作用就是给某一个变量取别名&#xff0c;但实际上&#xff0c;我们使用的引用是左值引用&#xff0c;而我们现在要了解的是与左值引用相对应的右值引用。 无论左…

【原创】java+springboot+mysql在线课程学习网设计与实现

个人主页&#xff1a;程序猿小小杨 个人简介&#xff1a;从事开发多年&#xff0c;Java、Php、Python、前端开发均有涉猎 博客内容&#xff1a;Java项目实战、项目演示、技术分享 文末有作者名片&#xff0c;希望和大家一起共同进步&#xff0c;你只管努力&#xff0c;剩下的交…

目标检测——YOLO11算法解读

作者&#xff1a;Ultralytics公司 代码&#xff1a;https://github.com/ultralytics/ultralytics YOLO系列算法解读&#xff1a; YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算…

FFmpeg的简单使用【Windows】--- 视频倒叙播放

实现功能 点击【选择文件】按钮可以选择视频&#xff0c;当点击【开始处理】按钮之后&#xff0c;会先将视频上传到服务器&#xff0c;然后开始进行视频倒叙播放的处理&#xff0c;当视频处理完毕之后会将输出的文件路径返回&#xff0c;同时在页面中将处理好的视频展示出来。…

第二十三篇:网络拥塞了,TCP/IP如何解决的?

一.显示拥塞通知 当发生网络拥塞时&#xff0c;发送主机应该减少数据包的发送量。作为IP上层协议&#xff0c;TCP虽然也能控制网络拥塞&#xff0c;不过它是通过数据包的实际损坏情况来判断是否发生拥塞。然而这种方法不能在数据包损坏之前减少数据包的发送量。 为了解决这个…

【网络安全】CVE-2024-46990: Directus环回IP过滤器绕过实现SSRF

未经许可,不得转载。 文章目录 背景漏洞详情受影响版本解决方案背景 Directus 是一款开源 CMS,提供强大的内容管理 API,使开发人员能够轻松创建自定义应用程序,凭借其灵活的数据模型和用户友好的界面备受欢迎。然而,Directus 存在一个漏洞,允许攻击者绕过默认的环回 IP …

使用libssh2上传下载文件及Makefile编写

使用libssh2上传下载文件及Makefile编写 一、准备工作二、上传和下载文件三、编写Makefilelibssh2是一个开源的SSH库,用于在C/C++程序中实现SSH2协议的功能。通过libssh2,我们可以方便地进行远程登录、执行命令、上传和下载文件等操作。本文将详细介绍如何使用libssh2库上传和…

【网易云音乐】--源代码分享

最近写了一个网易云音乐的音乐实现部分&#xff0c;是通过JavaScript和jQuery实现的&#xff0c;具体效果大家可以参照下面的视频 源代码分享 - git地址: 网易云音乐源代码 下面将着重讲解一下音乐实现部分 视频有点模糊&#xff0c;不好意思&#xff0c;在b站上添加视频的时候…

全能PDF工具集 | PDF Shaper Ultimate v14.6 便携版

软件简介 PDF Shaper是一款功能强大的PDF工具集&#xff0c;它提供了一系列用于处理PDF文档的工具。这款软件使用户能够轻松地转换、分割、合并、提取页面以及旋转和加密PDF文件。PDF Shaper的界面简洁直观&#xff0c;使得即使是新手用户也能快速上手。它支持广泛的功能&…

基于Nodemcu的手机控制小车

基于Nodemcu的手机控制小车 一、项目说明二、项目材料三、代码与电路设计四、轮子和车体五、电路连接六、使用方法 一、项目说明 嗨&#xff0c;机器人项目制造者们&#xff01;在这个项目中&#xff0c;我制作了这辆简单但快速的遥控车&#xff0c;它可以通过智能手机控制&am…