数据结构编程实践20讲(Python版)—01数组

本文目录

      • 01 数组 array
        • S1 说明
        • S2 举例
        • S3 问题:二维网格中的最小路径
          • 求解思路
          • Python3程序
        • S4 问题:图像左右变换
          • 求解思路
          • Python3程序
        • S5 问题:青蛙过河
          • 求解思路
          • Python3程序

写在前面

数据结构是计算机科学中的一个重要概念,用于组织和存储数据,以便于高效的访问和修改。不同的数据结构适用于不同类型的应用场景,选择合适的数据结构对于算法的性能至关重要。

常见的数据结构可以分为线性和非线性两大类。

  • 线性数据结构包括数组、链表、栈和队列,适合存储顺序关系的数据。数组提供随机访问能力,而链表则在插入和删除操作上更具灵活性。栈和队列分别实现后进先出(LIFO)和先进先出(FIFO)的访问模式。
  • 非线性数据结构包括树和图。树结构(如二叉树、AVL树和B树)用于表示层次关系,广泛应用于搜索和排序。图则用于表示复杂的连接关系,适合网络、社交图等场景。

此外,散列结构(如哈希表和哈希集合)提供了快速的查找和插入操作,字典和集合则用于存储键值对和不重复元素。高级数据结构如Trie和并查集则解决特定问题,如字符串匹配和动态连通性。

该系列中所给的问题并不是最复杂的,同时给的解法的时间复杂度不一定是最优的,因为本系列主要讲解数据结构。

01 数组 array

S1 说明

数组是一种数据结构,用于存储固定大小的元素集合。每个元素在数组中的位置由一个索引(或下标)唯一标识。通常从零开始。数组中的所有元素类型相同,提供随机访问和直接存取的能力。


S2 举例

在Python中,数组可以通过列表、array模块或NumPy库实现。选择哪种实现方式取决于具体的需求,例如数据类型的统一性、性能需求以及可用的库。对于一般的应用,列表通常足够用;而对于科学计算,NumPy数组则提供了更高效的操作。

  • 列表
a = [1, 2, 3, 8, 11]# 多维
b = [[1, 2, 1, -1, -2]]
c = [[1, 2, 1, -1, -2], [1, 2]]
  • 自带的array模块
import array
my_array = array.array('i', [1, 4, 9, 64, 121])  # 'i'表示整型# 多维
rows = 3
cols = 3
multi_array = [array.array('i', [826] * cols) for _ in range(rows)]
  • Numpy库
import numpy as np
my_array1 = np.array([2, 6, 12, 72, 132])# 多维
my_array2 = np.array([[2, 6, 12, 72, 132], [0, 2, 6, 56, 110]])

S3 问题:二维网格中的最小路径

给定一个 m × n m\times n m×n 的网格 g r i d grid grid,其中 g r i d [ i ] [ j ] grid[i][j] grid[i][j]表示到达该位置的代价。需要找到从 ( 0 , 0 ) (0, 0) (0,0) ( m − 1 , n − 1 ) (m-1, n-1) (m1,n1)的最小路径和,只能往下、右两个方向移动。现有网格如下:
在这里插入图片描述

求解思路
  1. 题目中的网格代价可以用二维数组表示:
grid_cost = [[3, 2, 2, 1], [4, 3, 1, 2], [1, 2, 4, 2], [3, 2, 3, 2]]
  1. 利用动态规划算法求解:
  • 状态定义:定义 d p [ i ] [ j ] dp[i][j] dp[i][j]为到达 ( i , j ) (i, j) (i,j)的最小路径和
  • 状态转移:从上方和左方转移到 ( i , j ) (i, j) (i,j),因此
    d p [ i ] [ j ] = g r i d [ i ] [ j ] + m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j]=grid[i][j]+min(dp[i−1][j],dp[i][j−1]) dp[i][j]=grid[i][j]+min(dp[i1][j],dp[i][j1])
  • 边界条件
    • 起始点: d p [ 0 ] [ 0 ] = g r i d [ 0 ] [ 0 ] dp[0][0] = grid[0][0] dp[0][0]=grid[0][0]
    • 第一行(根据条件,只能从左边过来): d p [ 0 ] [ j ] = d p [ 0 ] [ j − 1 ] + g r i d [ 0 ] [ j ] dp[0][j] = dp[0][j - 1] + grid[0][j] dp[0][j]=dp[0][j1]+grid[0][j]
    • 第一列(根据条件,只能从上边过来): d p [ i ] [ 0 ] = d p [ i − 1 ] [ 0 ] + g r i d [ i ] [ 0 ] dp[i][0] = dp[i - 1][0] + grid[i][0] dp[i][0]=dp[i1][0]+grid[i][0]
  • 结果:最终的结果为 d p [ m − 1 ] [ n − 1 ] dp[m-1][n-1] dp[m1][n1]
Python3程序
def minPathSum(grid):m, n = len(grid), len(grid[0])dp = [[0] * n for _ in range(m)]  # 存储最小路径和dp[0][0] = grid[0][0]# 初始化第一行for j in range(1, n):dp[0][j] = dp[0][j - 1] + grid[0][j]# 初始化第一列for i in range(1, m):dp[i][0] = dp[i - 1][0] + grid[i][0]# 填充 dp 表for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]# 获取最小路径和min_sum = dp[m - 1][n - 1]return min_sum# 示例输入
grid_cost = [[3, 2, 2, 1],[4, 3, 1, 2],[1, 2, 4, 2],[3, 2, 3, 2]
]min_sum  = minPathSum(grid_cost)
print(f"最小路径和: {min_sum}")# 最小路径和: 14
S4 问题:图像左右变换

给定一张图片,实现该图片的左右互换。
在这里插入图片描述

求解思路
  1. 用PIL包读取RGB模式的图片,然后利用numpy获得三维数组
  2. 可利用 l e f t _ p i x e l , r i g h t _ p i x e l = r i g h t _ p i x e l , l e f t _ p i x e l left\_pixel, right\_pixel = right\_pixel, left\_pixel left_pixel,right_pixel=right_pixel,left_pixel实现左右像素互换
  3. 三维数组利用matplotlib可视化
Python3程序
import numpy as np
from PIL import Image
import matplotlib.pyplot as pltdef flip_image_horizontally(imagepath):original_image = Image.open(imagepath).convert('RGB')# 读取为RGBrgb_data = np.array(original_image).transpose([2, 0, 1])challels, rows, cols = rgb_data.shape# 读取三维数组for c in range(challels):for i in range(rows):for j in range(cols // 2):# 交换左右像素的 RGB 值rgb_data[c][i][j], rgb_data[c][i][cols - 1 - j] = (rgb_data[c][i][cols - 1 - j], rgb_data[c][i][j])# 可视化plt.imshow(rgb_data.transpose([1, 2, 0]))plt.axis('off')plt.show()if __name__ == '__main__':imagepath = '你的图片路径'flip_image_horizontally(imagepath)

在这里插入图片描述

S5 问题:青蛙过河

一只青蛙想要过河。 假定河流被等分为若干个单元格,并且在每一个单元格内有可能放有一块石子,也有可能没有。

现给你石子的位置列表 s t o n e s stones stones(用单元格序号表示), 请判定青蛙能否成功过河(青蛙可以跳上石子,但是不可以跳入水中)即能否在最后一步跳至最后一块石子上。开始时, 青蛙默认已站在第一块石子上,并可以假定它第一步只能跳跃 1 个单位(即只能从单元格 1 跳至单元格 2 )。

如果青蛙上一步跳跃了 k k k个单位,那么它接下来的跳跃距离只能选择为 k − 1 、 k k - 1、k k1k k + 1 k + 1 k+1个单位。 另请注意,青蛙只能向前方(终点的方向)跳跃。

例如:给定 s t o n e s = [ 0 , 1 , 3 , 5 , 6 , 8 , 12 , 17 ] stones = [0,1,3,5,6,8,12,17] stones=[0,1,3,5,6,8,12,17],具体见下图:

在这里插入图片描述
按照如下方案跳跃:跳 1 个单位到第 2 块石子(位置1), 然后跳 2 个单位到第 3 块石子(位置3), 接着 跳 2 个单位到第 4 块石子(位置5), 然后跳 3 个单位到第 6 块石子(位置8), 跳 4 个单位到第 7 块石子(位置12), 最后,跳 5 个单位到第 8 个石子(即最后一块石子,位置17)。

求解思路
  1. 利用深度优先搜索(DFS)结合记忆化来解决这个问题
  • 状态表示
    使用一个递归函数 dfs(position, k),其中 position 是青蛙当前所在的位置,k 是上一次的跳跃距离。
  • 终止条件
    如果 position 是最后一块石头的位置,返回 True。
  • 递归
    • 对于每一次跳跃,尝试 k - 1、k 和 k + 1 的跳跃距离。
    • 检查新位置是否在 stones 中,并且是否可以到达。
  • 记忆化
    使用一个字典来存储已经访问过的状态,以避免重复计算。
Python3程序
def canCross(stones):stone_set = set(stones)memo = {}# DFS深度优先搜索def dfs(position, k):# 判断终止条件if position == stones[-1]:return True# 判断这个位置是否来过,并且是不是可以到达的if (position, k) in memo:return memo[(position, k)]# 遍历可能的跳跃单位for jump in [k - 1, k, k + 1]:if jump > 0:next_position = position + jump# 有石头,并且可到达if next_position in stone_set and dfs(next_position, jump):# 存储已经访问过的状态memo[(position, k)] = Truereturn Truememo[(position, k)] = Falsereturn Falsereturn dfs(stones[0], 0)if __name__ == '__main__':stones = [0, 1, 3, 5, 6, 8, 12, 17]print(canCross(stones))

结果

True

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HttpSession使用方法及原理

HttpSession使用方法及原理 一、HttpSession使用流程说明二、登录概述具体 三、访问过程概述具体 一、HttpSession使用流程说明 1.用户发送登录请求到服务器。 2.服务器处理登录请求,调用userService.login(loginUser)。 3.如果登录成功,服务器调用requ…

Linux云计算 |【第四阶段】NOSQL-DAY2

主要内容: Redis集群概述、部署Redis集群(配置manage管理集群主机、创建集群、访问集群、添加节点、移除节点) 一、Redis集群概述 1、集群概述 所谓集群,就是通过添加服务器的数量,提供相同的服务,从而让…

【echarts】报错series.render is required.

总结:就是echarts无法保存renderItem函数到json里,因为renderItem是个封装方法,因此需要初始化加载时重新插入renderItem即可 1.描述:控制台报错series.render is required. 原数据json如下: {type: "bar"…

工作安排 - 华为OD统一考试(E卷)

2024华为OD机试(C卷+D卷)最新题库【超值优惠】Java/Python/C++合集 题目描述 小明每周上班都会拿到自己的工作清单,工作清单内包含n项工作,每项工作都有对应的耗时时长(单位h)和报酬,工作的总报酬为所有已完成工作的报酬之和。那么请你帮小明安排一下工作,保证小明在指定…

科研绘图系列:R语言树结构聚类热图(cluster heatmap)

文章目录 介绍加载R包导入数据数据预处理画图修改图形导出数据系统信息介绍 热图结合树结构展示聚类结果通常用于展示数据集中的模式和关系,这种图形被称为聚类热图或层次聚类热图。在这种图中,热图部分显示了数据矩阵的颜色编码值,而树结构(通常称为树状图或聚类树)则显…

AIGAME背后的强大背景与AI币价值的崛起

AIGAME平台背后汇集了强大的资本和技术支持,凭借蒙特加密产业基金的战略投资和汇旺集团的多元化Web3基础设施建设,AIGAME在全球范围内迅速崛起。平台所使用的Sleepless AI技术,结合区块链与AI的深度融合,赋能AI币,使其…

虚拟社交的新时代:探索Facebook的元宇宙愿景

随着技术的不断进步,社交媒体的形态也在悄然变化。Facebook(现名Meta)正站在这一变革的前沿,积极探索元宇宙的愿景。元宇宙不仅是虚拟现实(VR)和增强现实(AR)的结合,更是…

遍历9个格子winmine!StepBlock和遍历8个格子winmine!StepBox的对决

遍历9个格子winmine!StepBlock和遍历8个格子winmine!StepBox的对决 第一部分:windbg调试记录。 0: kd> g Breakpoint 10 hit winmine!DoButton1Up: 001b:0100390e a130510001 mov eax,dword ptr [winmine!xCur (01005130)] 0: kd> kc # 00 winmine…

【RabbitMQ 项目】服务端:服务器模块

文章目录 一.编写思路二.代码实践三.服务端模块关系总结 一.编写思路 成员变量: muduo 库中的 TCP 服务器EventLoop 对象:用于主线程循环监控连接事件协议处理句柄分发器:用于初始化协议处理器,便于把不同请求派发给不同的业务处理…

Golang | Leetcode Golang题解之第433题最小基因变化

题目: 题解: func diffOne(s, t string) (diff bool) {for i : range s {if s[i] ! t[i] {if diff {return false}diff true}}return }func minMutation(start, end string, bank []string) int {if start end {return 0}m : len(bank)adj : make([][…

OpenHarmony标准系统mipi摄像头适配

OpenHarmony标准系统mipi摄像头适配 本文档以rk3568为例,讲述如何在OpenHarmony 标准系统rk设备上适配mipi摄像头。 开发环境 OpenHarmony标准系统4.1rrk3568设备摄像头ov5648,ov8858 文档约定:4.1r_3568为OpenHarmony标准系统源码根目录 1.适配准备:得…

树莓派pico上手

0 介绍 不同于作为单板计算机的树莓派5,树莓派 pico 是一款低成本、高性能的微控制器板,具有灵活的数字接口。主要功能包括: 英国树莓派公司设计的 RP2040 微控制器芯片双核 Arm Cortex M0 处理器,弹性的时钟频率高达 133 MHz26…

Spring AOP的应用

目录 1、maven坐标配置与xml头配置 2、代理方式的选择与配置 3、AOP的三种配置方式 3.1、XML模式 3.1.1 创建目标类和方法 3.1.2 创建切面 3.1.3 切面xml配置与表达式说明 3.1.4 单测 3.2 纯注解模式 3.2.1 开启注解相关配置 3.2.2 创建目标类和方法 3.2.3 创建切面…

FGPA实验——触摸按键

本文系列都基于正点原子新起点开发板 FPGA系列 1,verlog基本语法(随时更新) 2,流水灯(待定) 3,FGPA实验——触摸按键 一、触摸操作原理实现 分类:电阻式(不耐用&…

二叉树进阶

目录 1. 二叉搜索树实现 1.1 二叉搜索树概念 2.2 二叉搜索树操作 ​编辑 ​编辑 2.3 二叉搜索树的实现 2.3.0 Destroy() 析构 2.3.1 Insert()插入 2.3.2 InOrder() 打印搜索二叉树 ​编辑​编辑 2.3.3 Find() 查找 …

el-table表格点击该行任意位置时也勾选上其前面的复选框

需求&#xff1a;当双击表格某一行任意位置时&#xff0c;自动勾选上其前面的复选框 1、在el-table 组件的每一行添加row-dblclick事件&#xff0c;用于双击点击 <el-table:data"tableData"ref"tableRef"selection-change"handleSelectionChange&q…

如何在Chrome最新浏览器中调用ActiveX控件?

小编最近登陆工商银行网上银行&#xff0c;发现工商银行的个人网银网页&#xff0c;由于使用了ActiveX安全控件&#xff0c;导致不能用高版本Chrome浏览器打开&#xff0c;目前只有使用IE或基于IE内核的浏览器才能正常登录网上银行&#xff0c;而IE已经彻底停止更新了&#xff…

AI绘图网页版工具

https://chat.bushao.info/?inVitecodeCHBEPQQOOM 一款AI绘图工具&#xff0c;很好玩&#xff0c;推荐&#xff1b; 我自己根据文本生成的图&#xff0c;感觉还不错。

ROC、TPR、FPR的含义

1、ROC&#xff08;Receiver Operating Characteristic&#xff09; ROC&#xff08;Receiver Operating Characteristic&#xff09;曲线是一种用于评估分类模型性能的工具。它通过绘制真阳性率&#xff08;True Positive Rate, TPR&#xff09;与假阳性率&#xff08;False…

仪表放大器AD620

AD623 是一款低功耗、高精度的仪表放大器&#xff0c;而不是轨到轨运算放大器。它的输入电压范围并不覆盖整个电源电压&#xff08;轨到轨&#xff09;&#xff0c;但在单电源供电下可以处理接近地电位的输入信号。 AD620 和 AD623 都是仪表放大器&#xff0c;但它们在一些关键…