transformer模型进行英译汉,汉译英

上面是在测试集上的表现

下面是在训练集上的表现

 

上面是在训练集上的评估效果

 

这是在测试集上的评估效果,模型是transformer模型,模型应该没问题,以上的是一个源序列没加结束符和加了结束符的情况。

transformer源序列做遮挡填充的自注意力,这就让编码器的输出中每个token的语义表示变成了整个序列的token的加权和形式,也就带上了整个序列的信息,只不过因为token不同,或者位置不同,形成的信息也不同,解码器跨注意力在query编码器输出时,其中每个目标输入序列的每个token查询到的编码器输出部分,也就带了编码器整个序列的信息,transformer解码器依此来预测下个token是 啥?在训练中,损失反向传播,所以编码器和解码器 token嵌入语义向量一直 在变,最终形成每个token语义都具有特定的信息,是这样吗

你的理解非常准确,基本上概括了Transformer模型在训练和推理过程中的核心工作机制。下面我会更详细地解释这一过程,以帮助你更好地理解。

Transformer的编码器

在Transformer的编码器中,自注意力(Self-Attention)机制允许模型在处理每个位置的输入(token)时,都能考虑到序列中其他所有位置的输入。具体来说,每个token的表示(embedding)通过自注意力层被更新为整个输入序列中所有token的加权和,其中权重由token间的相似度决定。这样,每个token的表示都融入了整个序列的上下文信息,尽管因为token本身和它们的位置不同,所以融入的上下文信息也有所不同。

Transformer的解码器

解码器的工作方式类似,但它在生成目标序列时是自回归的(autoregressive),即每个token的生成依赖于之前已经生成的token。解码器包含两部分注意力机制:自注意力和跨注意力(Encoder-Decoder Attention)。自注意力机制让解码器能够关注到已经生成的序列部分,而跨注意力机制则允许解码器“查看”编码器的输出,即整个源序列的编码表示。这样,解码器在生成每个目标token时,都能够考虑到整个源序列的信息。

训练过程

在训练过程中,模型通过最小化预测目标序列与真实目标序列之间的差异(例如,使用交叉熵损失)来学习。这个损失函数通过反向传播算法来更新模型中的所有参数,包括token的嵌入向量、自注意力和跨注意力层的权重等。随着训练的进行,模型逐渐学习到如何有效地将源序列的信息编码到每个token的表示中,并如何使用这些信息来预测目标序列。

推理过程

在推理(或称为生成)过程中,解码器逐个生成目标序列的token。对于每个新生成的token,解码器都会重新运行其自注意力和跨注意力机制,以考虑之前已经生成的token和整个源序列的信息。这个过程一直持续到生成了完整的目标序列或达到了某个停止条件(如生成了特定的结束符或达到了最大长度限制)。

总结

你的理解完全正确:Transformer模型通过其独特的自注意力和跨注意力机制,使得编码器的输出能够包含整个源序列的信息,而解码器则能够利用这些信息来预测目标序列。在训练过程中,通过损失的反向传播,模型不断优化其参数,以形成更具信息量的token表示,从而更准确地完成序列到序列的转换任务。

 减小了嵌入向量为256,8头,两层,上面是训练集表现

 上面是测试集表现

 

 因为之前训练集上最后损失降的很快,评估集降的慢,我以为是过拟合,所以把嵌入弄为256,头数弄成4个头,因为头数是各个语义空间的表示,层数弄成一层,这样训练集的评估如下:

 上面用的是keras,keras是个 相当便捷的框架,后端能接tensorflow,pytorch,jax,而且能看summary,参数一清二楚,根据参数就基本能弄出模型架构,上面是加了回调,让模型生成一个翻译,可以看到模型学习的过程,开始它并不会翻译,等损失跌到一定程度,它学会了翻译.损失在指引它生成合适的token语义表示,并且transformer encoder decoder参数也在损失反向传播时不断更新,最终一个好的翻译模型,就是损失反向传播,用损失对可训练参数的梯度来更新参数,最终得到合适的 一组参数,这就是深度学习,就是找到适合模型架构的最合适的参数.回归到本质,就是y=f(x),找到一组合适的系数.这个最简单的transformer训练集表现如下:

 从最后一句话的翻译可以看出,模型不能理解吃惊,我感觉应该是加头数,不应该减头数

 训练集一如既往的好,测试集还是不太好,你说之前嵌入维度过大,层数多,过拟合还能说通,这个只有256的语义嵌入,一层,4个头,肯定不是上面说的原因,要么是因为这个数据集本身太小,导致模型学不到足够通用的语义表示,我觉得应该是这种,数据集太小,这个数据集只有29000样本,英语词汇经过bpe分词后是1073个,中文是6000多个

上面的transformer是keras自带的,下面的transformer是自己写的transformer,用的是tensorflow梯度带训练的,嵌入向量512,8头,一层,训练集上的表现如下:

下面是测试集上的表现:

 相当不错,甚至达到了keras中transformer训练集的表现,而且我并没有重启内核,模型从未在验证集数据上更新参数,言外之意就是这个评估就是模型的泛化能力,模型在从未见过的数据上表现的也很好

 

验证集损失降的还算不错

同样的层数和嵌入,头数,这是位置嵌入不可训练的transformer模型的测试集评估和训练集表现,训练中可以看到验证损失跌下去了,又涨回来了,可见用可训练的位置嵌入比不可训练的位置嵌入效果要好,源序列加[END]比不加效果好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54433.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

寄存器与内存

第三课:寄存器与内存、中央处理器(CPU)、指令和程序及高级 CPU 设计-CSDN博客 锁存器 引入 ABO0(开始状态)001(将A置1)110(将A置0)11 无论怎么做,都没法从1变…

大学生必看!60万人在用的GPT4o大学数学智能体有多牛

❤️作者主页:小虚竹 ❤️作者简介:大家好,我是小虚竹。2022年度博客之星🏆,Java领域优质创作者🏆,CSDN博客专家🏆,华为云享专家🏆,掘金年度人气作者&#x1…

Mamba所需的causal-conv1d 和mamba-ssm库在哪下载?

背景介绍 参照 Mamba [state-spaces/mamba: Mamba SSM architecture (github.com)] github中提到的环境安装[Installation 一栏] [Option] pip install causal-conv1d>1.4.0: an efficient implementation of a simple causal Conv1d layer used inside the Mamba block.…

Qt_窗口界面QMainWindow的介绍

目录 1、菜单栏QMenuBar 1.1 使用QMainWindow的准备工作 1.2 在ui文件中设计窗口 1.3 在代码中设计窗口 1.4 实现点击菜单项的反馈 1.5 菜单中设置快捷键 1.6 菜单中添加子菜单 1.7 菜单项中添加分割线和图标 1.8 关于菜单栏创建方式的讨论 2、工具栏QToolBar …

k8s Service 服务

文章目录 一、为什么需要 Service二、Kubernetes 中的服务发现与负载均衡 -- Service三、用例解读1、Service 语法2、创建和查看 Service 四、Headless Service五、集群内访问 Service六、向集群外暴露 Service七、操作示例1、获取集群状态信息2、创建 Service、Deployment3、创…

飞腾计算模块RapidIO性能测试

1、背景介绍 飞腾计算模块采用FT2000 64核处理器,搭配Tsi721 PCIE转RapidIO芯片,实现飞腾平台下的SRIO数据通信。操作系统采用麒麟信安,内核版本4.19.90. 2、驱动加载 驱动加载部分类似之前写过的X86平台下的RapidIO驱动加载,具…

Rsync未授权访问漏洞复现及彻底修复

一、什么是 Rsync? Rsync 是一种广泛使用的文件传输工具,它允许系统管理员和用户通过局域网(LAN)或广域网(WAN)在计算机之间同步文件和目录。Rsync 支持通过本地或远程 shell 访问,也可以作为守…

【Linux】常用指令详解一(ls,-a,-l,-d,cd,pwd,mkdir,touch,rm,clear)

1.前言 读了一些Linux常用指令的博文,很可惜没读到一点点手把手教怎么操作的博文,所以写一篇手把手教适合初学者的Linux常用指令博文 Linux的命令是树状结构 输入这一句命令:yum install -y tree 即可以查看Linux树状目录结构 查看示例&am…

STM32快速复习(十二)FLASH闪存的读写

文章目录 一、FLASH是什么?FLASH的结构?二、使用步骤1.标准库函数2.示例函数 总结 一、FLASH是什么?FLASH的结构? 1、FLASH简介 (1)STM32F1系列的FLASH包含程序存储器、系统存储器和选项字节三个部分&…

pytorch实现RNN网络

目录 1.导包 2. 加载本地文本数据 3.构建循环神经网络层 4.初始化隐藏状态state 5.创建随机的数据,检测一下代码是否能正常运行 6. 构建一个完整的循环神经网络 7.模型训练 8.个人知识点理解 1.导包 import torch from torch import nn from torch.nn imp…

Qt+FFmpeg开发视频播放器笔记(三):音视频流解析封装

音频解析 音频解码是指将压缩的音频数据转换为可以再生的PCM(脉冲编码调制)数据的过程。 FFmpeg音频解码的基本步骤如下: 初始化FFmpeg解码器(4.0版本后可省略): 调用av_register_all()初始化编解码器。 调用avcodec_register_all()注册所有编解码器。 打开输入的音频流:…

pthread_cond_signal 和pthread_cond_wait

0、pthread_join()函数作用: pthread_join() 函数会一直阻塞调用它的线程,直至目标线程执行结束(接收到目标线程的返回值),阻塞状态才会解除。如果 pthread_join() 函数成功等到了目标线程执行结束(成功获取…

运行 xxxxApplication 时出错。命令行过长。 通过 JAR 清单或通过类路径文件缩短命令行,然后重新运行。

一、问题描述 运行 xxxxApplication 时出错。命令行过长。 通过 JAR 清单或通过类路径文件缩短命令行,然后重新运行。 二、问题分析 在idea中,运行一个springboot项目,在使用大量的库和依赖的时候,会出现报错“命令行过长”&…

Java | Leetcode Java题解之第406题根据身高重建队列

题目&#xff1a; 题解&#xff1a; class Solution {public int[][] reconstructQueue(int[][] people) {Arrays.sort(people, new Comparator<int[]>() {public int compare(int[] person1, int[] person2) {if (person1[0] ! person2[0]) {return person2[0] - perso…

Java项目实战II基于Java+Spring Boot+MySQL的车辆管理系统(开发文档+源码+数据库)

目录 一、前言 二、技术介绍 三、系统实现 四、论文参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 "随着…

Arthas jvm(查看当前JVM的信息)

文章目录 二、命令列表2.1 jvm相关命令2.1.3 jvm&#xff08;查看当前JVM的信息&#xff09; 二、命令列表 2.1 jvm相关命令 2.1.3 jvm&#xff08;查看当前JVM的信息&#xff09; 基础语法&#xff1a; jvm [arthas18139]$ jvmRUNTIME …

【Delphi】通过 LiveBindings Designer 链接控件示例

本教程展示了如何使用 LiveBindings Designer 可视化地创建控件之间的 LiveBindings&#xff0c;以便创建只需很少或无需源代码的应用程序。 在本教程中&#xff0c;您将创建一个高清多设备应用程序&#xff0c;该应用程序使用 LiveBindings 绑定多个对象&#xff0c;以更改圆…

十七、RC振荡电路

振荡电路 1、振荡电路的组成、作用、起振的相位条件以及振荡电路起振和平衡幅度条件&#xff0c; 2、RC电路阻抗与频率、相位与频率的关系曲线; 3、RC振荡电路的相位条件分析和振荡频率

【yolo算法打架行为检测行人检测】

yolo打架行为检测 yolo算法打架行为检测yolo行人检测 yolo算法打架行为检测 数据集和模型YOLO算法打架行为检测数据集1万数据集 分两个类别&#xff1a;正常&#xff0c;打架行为&#xff1b; train: ../train/images val: ../valid/images test: ../test/images nc: 2 names…

一次RPC调用过程是怎么样的?

注册中心 RPC&#xff08;Remote Procedure Call&#xff09;翻译成中文就是 {远程过程调用}。RPC 框架起到的作用就是为了实现&#xff0c;调用远程方法时&#xff0c;能够做到和调用本地方法一样&#xff0c;让开发人员更专注于业务开发&#xff0c;不用去考虑网络编程等细节…