个人学习笔记7-5:动手学深度学习pytorch版-李沐

#人工智能# #深度学习# #语义分割# #计算机视觉# #神经网络#

计算机视觉

13.10 转置卷积

例如,卷积层和汇聚层,通常会减少下采样输入图像的空间维度(高和宽)。然而如果输入和输出图像的空间维度相同,在以像素级分类的语义分割中将会很方便。转置卷积(transposed convolution)可以增加上采样中间层特征图的空间维度。

13.10.1 基本操作

转置卷积的实现:

import torch
from torch import nn
from d2l import torch as d2l

对输入矩阵X和卷积核矩阵K实现基本的转置卷积运算trans_conv:

def trans_conv(X, K):#K表示卷积核h, w = K.shapeY = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))for i in range(X.shape[0]):for j in range(X.shape[1]):Y[i: i + h, j: j + w] += X[i, j] * Kreturn Y

转置卷积通过卷积核“广播”输入元素,从而产生大于输入的输出。验证上述实现输出。

X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
trans_conv(X, K)

结果输出:

当输入X和卷积核K都是四维张量时,我们可以使用高级API获得相同的结果。

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)#(输入通道数,输出通道数,卷积核,是否具有偏差)
tconv.weight.data = K
tconv(X)

结果输出:

13.10.2 填充、步幅和多通道

在转置卷积中,填充被应用于的输出(常规卷积将填充应用于输入)。例如,当将高和宽两侧的填充数指定为1时,转置卷积的输出中将删除第一和最后的行与列。

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
tconv(X)

结果输出:

在转置卷积中,步幅被指定为中间结果(输出),而不是输入。使用相同输入和卷积核张量,将步幅从1更改为2会增加中间张量的高和权重。


 

tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
tconv(X)

结果输出:

对于多个输入和输出通道,转置卷积与常规卷积以相同方式运作。如果我们将X代入卷积层f来输出Y = f(X),并创建一个与f具有相同的超参数、但输出通道数量是X中通道数的转置卷积层g,那么g(Y )的形状将与X相同。

X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
tconv(conv(X)).shape == X.shape

结果输出:

13.10.3 与矩阵变换的联系

定义一个3x3的矩阵和2 × 2卷积核K,然后使用corr2d函数计算卷积输出Y:

X = torch.arange(9.0).reshape(3, 3)#构造一个3x3的一个0-8的矩阵
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
Y

结果输出;

接下来,我们将卷积核K重写为包含大量0的稀疏权重矩阵W。权重矩阵的形状是(4,9),其中非0元素来自卷积核K。

def kernel2matrix(K):k, W = torch.zeros(5), torch.zeros((4, 9))k[:2], k[3:5] = K[0, :], K[1, :]W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, kreturn WW = kernel2matrix(K)
W

结果输出:

逐行连结输入X,获得了一个长度为9的矢量。然后,W的矩阵乘法和向量化的X给出了一个长度为4的向量。重塑它之后,可以获得与上面的原始卷积操作所得相同的结果Y:我们刚刚使用矩阵法实现了卷积。

Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2)

结果输出:

同样,可以使用矩阵乘法来实现转置卷积。将上面的常规卷积2 × 2的输出Y作为转置卷积的输入。想要通过矩阵相乘来实现它,只需要将权重矩阵W的形状转置为(9, 4)。

Z = trans_conv(Y, K)
Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3)

结果输出:

如何将转置卷积换算成正常卷积:

填充为0步幅为1:

填充为p步幅为1:(例子p=1)

填充为p步幅为s:(例子p=0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【物联网技术大作业】设计一个智能家居的应用场景

前言: 本人的物联网技术的期末大作业,希望对你有帮助。 目录 大作业设计题 (1)智能家居的概述。 (2)介绍智能家居应用。要求至少5个方面的应用,包括每个应用所采用的设备,性能&am…

2023级JavaScript与jQuery

第三课:JavaScript对象编程 一.预习笔记 1.Date对象 对象创建:var myDatenew Date() 输出显示当前日期的标准时间 对象创建:var myDatenew Date(“2024/09/14”) 对象创建:var myDatenew Date(2024,9,14) 当前对象创建时&…

TiDB从0到1学习笔记(精华篇)

历时四个月,恭喜赵老师的《TiDB从0到1》 系列文章顺利完结,小编再次梳理一遍文稿,并附注解分享给大家。 整体架构 从 TiDB 1.0 到 8.0,TiDB 的体系结构一直在不断演进。接下来让我们一起看看整体架构的变化。 TiDB v1 TiDB v1&…

Windows 环境下 vscode 配置 C/C++ 环境

vscode Visual Studio Code(简称 VSCode)是一个由微软开发的免费、开源的代码编辑器。它支持多种编程语言,并提供了代码高亮、智能代码补全、代码重构、调试等功能,非常适合开发者使用。VSCode 通过安装扩展(Extension…

node.js实现阿里云短信发送

效果图 实现 一、准备工作 1、官网直达网址: 阿里云 - 短信服务 2、按照首页提示依次完成相应资质认证和短信模板审核; 3、获取你的accessKeySecret和accessKeyId; 方法如下: 获取AccessKey-阿里云帮助中心 4、获取SignNa…

【LabVIEW学习篇 - 24】:生产者/消费者设计模式

文章目录 生产者/消费者设计模式案例:控制LED等亮灭 生产者/消费者设计模式 生产者/消费者是多线程编程中最基本的一种模式,使用非常普遍。从软件角度看,生产者就是数据的提供方,而消费者就是数据的消费处理方,二者之…

微信小程序开发——比较两个数字大小

在这里我们使用的工具是 需要自行安装和配置。 在微信小程序中比较两个数字大小有以下几种方式: 一、普通条件判断 在小程序的.js 文件中,先定义两个数字,如let num1 5; let num2 3;。通过if - else if - else语句,根据num1与…

文件管理系统DCC与泛微OA系统集成案例

一、项目背景 上海某半导体有限公司主要产品应用于图像传感器、 图像信号处理芯片、 低功耗芯片、 射频芯片等。 公司内部有DCC文件管理系统和OA系统,由SAP PO平台进行中间管理,DCC系统对接泛微OA系统推送文件等操作,提高公司内部各自系统…

智能智造和工业软件研发平台SCSAI功能介绍

用爱编程30年,倾心打造工业和智能智造软件研发平台SCIOT,用创新的方案、大幅的让利和极致的营销,致力于为10000家的中小企业实现数字化转型,打造数字化企业和智能工厂,点击上边蓝色字体,关注“AI智造AI编程”或文末扫码…

lightdm , xrandr , startx 桌面管理器,窗口管理器

问题: 了解这几个的含义。 显示服务器 这个不是很明白 显示管理器, 知道就行了,也不是很明白。 窗口管理器。 桌面管理器。 这个其实就是 桌面环境了, 我们的板卡上使用的是xface 。 这个 xface 是一个集合,这里面…

亚马逊IP关联及其解决方案

在电子商务领域,亚马逊作为全球领先的在线购物平台,吸引了众多商家和个人的参与。然而,随着业务规模的扩大,商家在使用亚马逊服务时可能会遇到IP关联的问题,这不仅影响账户的正常运营,还可能带来一系列不利…

基于SpringBoot+Vue的个性化视频推荐系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的…

ComfyUI安装节点过程中被降低了版本的软件包重新安装

最近在安装2个没怎么及时更新节点时,安装节点依赖性过程中,将原高版本的软件包,给降到了低版本,解决的办法就是:1、再次删除软件包,2、指定版本号重新安装回高版本软件包。

Centos7.9部署Gitlab-ce-16.9

一、环境信息 软件/系统名称版本下载地址备注Centos77.9.2009https://mirrors.nju.edu.cn/centos/7.9.2009/isos/x86_64/CentOS-7-x86_64-DVD-2009.isogitlab-cegitlab-ce-16.9.1https://mirror.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/gitlab-ce-16.9.1-ce.0.el7.x86_64.rpm…

使用Azure Devops Pipeline将Docker应用部署到你的Raspberry Pi上

文章目录 1. 添加树莓派到 Agent Pool1.1 添加pool1.2 添加agent 2. 将树莓派添加到 Deployment Pool2.1 添加pool2.2 添加target 3. 添加编译流水线3.1 添加编译命令3.2 配置触发器 4. 添加发布流水线4.1 添加命令行4.2 配置artifact和触发器 5. 完成 1. 添加树莓派到 Agent P…

从基础到进阶:利用EasyCVR安防视频汇聚平台实现高效视频监控系统的五步走

随着科技的飞速发展,视频监控技术在社会安全、企业管理、智慧城市构建等领域扮演着越来越重要的角色。一个高效智能的视频监控管理系统不仅能够提升监控效率,还能在预防犯罪、事故预警、数据分析等方面发挥巨大作用。 一、需求分析 在设计视频监控管理…

如何自学SQL(从入门到精通)?

SQL语言对于各个数据库是通用的,学习SQL数据库语言是一个系统的过程,可以分为几个阶段:入门、进阶、实践和精通。 下面是一些建议,可以帮助你从入门到精通自学SQL: 1. 学习方法 a. 理解基本概念 数据库理论&#xf…

rk3568 parameter.txt 添加自己的分区,或者去掉已有的分区

问题: 客户在 之前的核心板上 可以烧写自己的镜像,但是在最新的核心板上却烧写不上,新旧核心板 只是变了emmc , 由 江波龙 ------->星火。 分析: 客户的镜像的分区是经过自己的定制的,所以有可能 是 由…

iPhone 16预售已开,沙漠金色最抢手,喜提新机后别忘了这件事!

9月13日20点,iPhone 16系列正式开启官方预购。今年全新的iphone16不仅新增相机按钮和AI功能,还增加了沙漠金配色。“加量不加价”的iPhone 16系列开售依旧火爆,iPhone 16系列开售1分钟内,苹果官方网站一度被消费者买到崩&#xff…

P4779 【模板】单源最短路径(堆优化dijkstra)

堆优化dijkstra&#xff0c;时间复杂度&#xff0c;我个人写习惯的模版。 #include<bits/stdc.h> using namespace std; #define PII pair<int,int> #define fi first #define se second const int N2e510;int read(){int x0,f1;char chgetchar();while(!isdigit(…