MapSet之二叉搜索树

系列文章:

                 1.   先导片--Map&Set之二叉搜索树

                 2.   Map&Set之相关概念

目录

前言

1.二叉搜索树

1.1 定义

1.2 操作-查找

1.3 操作-新增

1.4 操作-删除(难点)

1.5 总体实现代码

1.6 性能分析


前言

      TreeMap 和 TreeSet 是 Java 中基于搜索树实现的 Map 和 Set。实际上,它们使用的是红黑树数据结构,而红黑树是一种近似平衡的二叉搜索树。在红黑树的基础上,还添加了颜色属性以及红黑树性质验证来确保树的平衡性,所以我们需要了解一下二叉搜索树这个概念。

1.二叉搜索树

1.1 定义

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 :
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
它的左右子树也分别为二叉搜索树

1.2 操作-查找

如果根节点不为空:

如果根节点key == 查看key 返回true

如果根节点key > 查看key 在其左子树查找

如果根节点key < 查看key 在其右子树查找

否则返回false

实现代码:

class BinarySearchTree {public static class Node {int key;Node left;Node right;public Node(int key) {this.key = key;}}private Node root = null;/*** 搜索* @param key* @return*/public Node search(int key) {Node cur = root;while (cur != null){if(cur.key == key){return cur;}else if (key < cur.key){cur = cur.left;}else{cur = cur.right;}}return null;}
}

1.3 操作-新增

1.如果树为空树,即根 == null,直接插入

2.如果树不是空树,按照查找逻辑查找位置,插入新结点

实现代码:

class BinarySearchTree {public static class Node {int key;Node left;Node right;public Node(int key) {this.key = key;}}private Node root = null;/*** 插入** @param key* @return*/public boolean insert(int key) {Node cur = root;if (cur == null) {cur = new Node(key);return true;}Node parent = null;while (cur != null) {if (key == cur.key) {return false;} else if (key < cur.key) {parent = cur;cur = cur.left;} else {parent = cur;cur = cur.right;}}Node node = new Node(key);if (key < parent.key) {parent.right = node;} else {parent.left = node;}return true;}
}

1.4 操作-删除(难点)

设待删除结点为cur,待删除结点的双亲结点为parent

1.cur.left == null;

1. cur root ,则 root = cur.right
2. cur 不是 root cur parent.left ,则 parent.left = cur.right
3. cur 不是 root cur parent.right ,则 parent.right = cur.right

2.cur.right == null;

1. cur root ,则 root = cur.left
2. cur 不是 root cur parent.left ,则 parent.left = cur.left
3. cur 不是 root cur parent.right ,则 parent.right = cur.left

3.cur.left != null && cur.right != null;

需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题。

实现代码:

class BinarySearchTree {public static class Node {int key;Node left;Node right;public Node(int key) {this.key = key;}}private Node root = null;/*** 删除** @param key* @return*/public boolean delete(int key) {Node cur = root;Node parent = null;while (cur != null) {if (key == cur.key) {deleteValue(cur, parent);return true;} else if (key < cur.key) {parent = cur;cur = cur.left;} else {parent = cur;cur = cur.right;}}return false;}public void deleteValue(Node cur, Node parent) {//cur左右孩子都不在if (cur.left == null && cur.right == null) {if (parent.right == cur) {parent.right = null;} else {parent.left = null;}//cur左孩子不在}else if (cur.left == null) {if (cur == root) {root = root.right;} else if (cur == parent.right) {parent.right = cur.right;} else {parent.left = cur.right;}//cur右孩子不在}else if (cur.right == null) {if (cur == root) {root = root.left;} else if (cur == parent.right) {parent.right = cur.left;} else {parent.left = cur.left;}//左右均在}else{//为删除节点的右节点Node target = cur.right;Node targetParent = cur;//找右树最左节点while (target.left != null){targetParent = target;target = target.left;}cur.key = target.key;if(targetParent.left == target){targetParent.left = target.right;}else{targetParent.right = target.right;}}}
}

1.5 总体实现代码

class BinarySearchTree {public static class Node {int key;Node left;Node right;public Node(int key) {this.key = key;}}private Node root = null;/*** 搜索** @param key* @return*/public Node search(int key) {Node cur = root;while (cur != null) {if (cur.key == key) {return cur;} else if (key < cur.key) {cur = cur.left;} else {cur = cur.right;}}return null;}/*** 插入** @param key* @return*/public boolean insert(int key) {Node cur = root;if (cur == null) {cur = new Node(key);return true;}Node parent = null;while (cur != null) {if (key == cur.key) {return false;} else if (key < cur.key) {parent = cur;cur = cur.left;} else {parent = cur;cur = cur.right;}}Node node = new Node(key);if (key < parent.key) {parent.right = node;} else {parent.left = node;}return true;}/*** 删除** @param key* @return*/public boolean delete(int key) {Node cur = root;Node parent = null;while (cur != null) {if (key == cur.key) {deleteValue(cur, parent);return true;} else if (key < cur.key) {parent = cur;cur = cur.left;} else {parent = cur;cur = cur.right;}}return false;}public void deleteValue(Node cur, Node parent) {//cur左右孩子都不在if (cur.left == null && cur.right == null) {if (parent.right == cur) {parent.right = null;} else {parent.left = null;}//cur左孩子不在}else if (cur.left == null) {if (cur == root) {root = root.right;} else if (cur == parent.right) {parent.right = cur.right;} else {parent.left = cur.right;}//cur右孩子不在}else if (cur.right == null) {if (cur == root) {root = root.left;} else if (cur == parent.right) {parent.right = cur.left;} else {parent.left = cur.left;}//左右均在}else{//为删除节点的右节点Node target = cur.right;Node targetParent = cur;//找右树最左节点while (target.left != null){targetParent = target;target = target.left;}cur.key = target.key;if(targetParent.left == target){targetParent.left = target.right;}else{targetParent.right = target.right;}}}
}

1.6 性能分析

      在二叉搜索树中,插入和删除操作都需要先进行查找。查找的效率直接影响了这些操作的性能。对于一个有n个节点的二叉搜索树,如果每个元素被查找的概率相等,那么平均查找长度将取决于节点在二叉搜索树中的深度。换句话说,节点越深,需要进行的比较次数就越多。

     然而,对于相同的关键码集合,如果插入关键码的顺序不同,可能会得到不同结构的二叉搜索树。这是因为二叉搜索树的性质要求左子树的所有节点的值小于根节点的值,右子树的所有节点的值大于根节点的值。因此,不同的插入顺序可能会导致树的结构有所不同,从而影响查找效率。

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log(N)

最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DELTA_IA-ASD_ASDA-A2简明教程

该文章仅供参考&#xff0c;编写人不对任何实验设备、人员及测量结果负责&#xff01;&#xff01;&#xff01; 0 引言 文章主要介绍电机的硬件连接、软件配置、转动调试以及软件控制。文章中提到的内容在产品手册中都有说明&#xff0c;强烈建议在操作前通读产品手册&#…

RocketMQ高级特性三-消费者分类

目录 前言 概述 区别 PullConsumer 定义与概述 原理机制 使用场景 优缺点 Java 代码示例 SimpleConsumer 定义与概述 原理机制 使用场景 优缺点 Java 代码示例 PushConsumer 定义与概述 原理机制 使用场景 优缺点 Java 代码示例 总结 前言 RocketMQ中的消…

常用排序算法(上)

目录 前言&#xff1a; 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3 常见的排序算法 2.常见排序算法的实现 2.1 堆排序 2.1 1 向下调整算法 2.1 2 建堆 2.1 3 排序 2.2 插入排序 2.1.1基本思想&#xff1a; 2.1.2直接插入排序&#xff1a; 2.1.3 插…

SQL进阶技巧:每年在校人数统计 | 区间重叠问题

目录 0 问题分析 1 数据准备 2 问题分析 3 小结 区间重叠问题 0 问题分析 有一个录取学生人数表 in_school_stu,记录的是每年录取学生的人数及录取学生的学制,计算每年在校学生人数。 1 数据准备 create table in_school_stu as ( select stack(5,1,2001,2,1200,2,2000…

Vue 中 watch 和 watchEffect 的区别

watch 和 watcheffect 都是 vue 中用于监视响应式数据的 api&#xff0c;它们的区别在于&#xff1a;watch 用于监视特定响应式属性并执行回调函数。watcheffect 用于更通用的响应式数据监视&#xff0c;但回调函数中不能更新响应式数据。Vue 中 watch 和 watchEffect 的区别 …

linux下的Socket网络编程教程

套接字概念 Socket本身有“插座”的意思&#xff0c;在Linux环境下&#xff0c;用于表示进程间网络通信的特殊文件类型。本质为内核借助缓冲区形成的伪文件。与管道类似的&#xff0c;Linux系统将其封装成文件的目的是为了统一接口&#xff0c;使得读写套接字和读写文件的操作…

从材料到应用:螺杆支撑座材质选择的多样性与精准性!

支撑座是连接丝杆和电机的轴承固定座&#xff0c;其材料的选择直接影响使用效果。那么&#xff0c;大家知道螺杆支撑座常用的材质有哪些吗&#xff1f; 1、高碳钢&#xff1a;高碳钢因其高强度和良好的耐磨性&#xff0c;是螺杆支撑座制作中常用的材料。它能够很好地配合滚珠螺…

ESD防静电监控系统助力电子制造行业转型升级

在电子制造行业中&#xff0c;静电危害不容小觑。ESD 防静电监控系统的出现&#xff0c;为行业转型升级带来强大助力。电子元件对静电极为敏感&#xff0c;微小的静电放电都可能损坏元件&#xff0c;影响产品质量。ESD 防静电监控系统能够实时监测生产环境中的静电状况&#xf…

C++——类和对象(2)

目录 一、类的默认成员函数 二、构造函数 &#xff08;1&#xff09;定义 &#xff08;2&#xff09;特点 三、析构函数 &#xff08;1&#xff09;定义 &#xff08;2&#xff09;特点 四、拷贝构造函数 &#xff08;1&#xff09;定义 &#xff08;2&#xff09;特…

【2024-2025源码+文档+调试讲解】微信小程序的城市公交查询系统

摘 要 当今社会已经步入了科学技术进步和经济社会快速发展的新时期&#xff0c;国际信息和学术交流也不断加强&#xff0c;计算机技术对经济社会发展和人民生活改善的影响也日益突出&#xff0c;人类的生存和思考方式也产生了变化。传统城市公交查询管理采取了人工的管理方法…

【论文阅读】DETRs Beat YOLOs on Real-time Object Detection

文章目录 摘要一、介绍二、相关工作2.1 实时目标检测器2.2 端到端目标检测器 三、检测器的端到端速度3.1 分析 NMS3.2 端到端速度基准 四、实时 DETR4.1 模型概述4.2 高效混合编码器4.3不确定性最小的查询选择4.4 缩放的RT - DETR 五、实验5.1 与SOTA对比5.2 混合编码器的消融研…

【重构获得模式 Refactoring to Patterns】

重构获得模式 Refactoring to Patterns 面向对象设计模式是“好的面向对象设计”&#xff0c;所谓“好的面向对象设计”指的是那些可以满足“应对变化&#xff0c;提高复用”的设计。 现代软件设计的特征是“需求的频繁变化”。设计模式的要点是“寻找变化点&#xff0c;然后…

大语言模型LLM权重4bit向量量化(Vector Quantization)/查找表量化基本原理

参考 https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html https://apple.github.io/coremltools/docs-guides/source/opt-palettization-algos.html Apple Intelligence Foundation Language Models 苹果向量量化&#xff1a; DKM:…

在VMware虚拟机中编译文件的时候报错:找不到头文件ft2build.h

以下是报错内容&#xff0c;提示说找不到头文件ft2build.h freetype_show_font.c:12:10: fatal error: ft2build.h: No such file or directory #include <ft2build.h> ^~~~~~~~~~~~ compilation terminated. 在编译之前已经交叉编译了freetype&#xff0c;…

MQ-2烟雾传感器详解(STM32)

目录 一、介绍 二、传感器原理 1.原理图 2.引脚描述 3.工作原理介绍 三、程序设计 main.c文件 mq2.h文件 mq2.c文件 四、实验效果 五、资料获取 项目分享 一、介绍 MQ-2气体传感器是一种常用的气体传感器&#xff0c;用于检测空气中的烟雾浓度。工作原理是基于半导…

Java项目: 基于SpringBoot+mybatis+maven+mysql图书馆管理系统(含源码+数据库+任务书+答辩PPT+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismavenmysql图书馆管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操…

网络安全应急响应技术原理与应用

网络安全应急响应概述 概念 为应对网络安全事件&#xff0c;相关人员或组织机构对网络安全事件进行监测、预警、分析、响应和恢复等工作 网络安全应急响应组织建立与工作机制 网络安全应急响应预案内容与类型 常见网络安全应急事件场景与处理流程 应急演练&#xff1a;对假定…

一台手机一个ip地址吗?手机ip地址泄露了怎么办

在数字化时代&#xff0c;‌手机作为我们日常生活中不可或缺的一部分&#xff0c;‌其网络安全性也日益受到关注。‌其中一个常见的疑问便是&#xff1a;‌“一台手机是否对应一个固定的IP地址&#xff1f;‌”实际上&#xff0c;‌情况并非如此简单。‌本文首先解答这一问题&a…

Web3社交新经济,与 SOEX 实现无缝交易的高级安全性

出于充分的理由&#xff0c;安全性是交易中至关重要的考虑因素。每个人都应该确保自己的资金在交易时是安全的。由于 &#xff33;&#xff2f;&#xff25;&#xff38; 充当您与交易所的最佳连接&#xff0c;因此必须强调的是&#xff0c;该系统不会引发任何安全问题。 &a…

模型 涌现思想

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。整体产生新特性&#xff0c;超越部分之和。 1 涌现思想的应用 1.1 蚁群算法中的涌现思想 蚁群算法&#xff08;Ant Colony Optimization, ACO&#xff09;是一种模拟蚂蚁觅食行为的计算模型&#xf…