NLP从零开始------16.文本中阶处理之序列到序列模型(1)

1. 序列到序列模型简介

        序列到序列( sequence to sequence, seq2seq) 是指输入和输出各为一个序列(如一句话) 的任务。本节将输入序列称作源序列,输出序列称作目标序列。序列到序列有非常多的重要应用, 其中最有名的是机器翻译( machine translation), 机器翻译模型的输入是待翻译语言(源语言) 的文本,输出则是翻译后的语言(目标语言) 的文本。

        此外, 序列到序列的应用还有: 改写( paraphrase), 即将输入文本保留原意, 用意思相近的词进行重写; 风格迁移( style transfer), 即转换输入文本的风格(如口语转书面语、负面评价改为正面评价、现代文改为文言文等); 文本摘要( summarization), 即将较长的文本总结为简短精练的短文本; 问答( question answering), 即为用户输入的问题提供回答;对话( dialog),即对用户的输入进行回应。这些都是自然语言处理中非常重要的任务。另外,还有许多任务,尽管它们并非典型的序列到序列任务,但也可以使用序列到序列的方法解决,例如后面章节将要提到的命名实体识别任务,即识别输入句子中的人名、地名等实体,既可以使用后面章节将要介绍的序列标注方法来解决,也可以使用序列到序列方法解决,举例如下:

        源序列: 小红在上海旅游。

        目标序列:[小红|人名]在[上海|地名]旅游。

        类似地,后续章节将要介绍的成分句法分析( constituency parsing)、语义角色标注( semantic role labeling, SRL)、共指消解( coreference resolution) 等任务也都可以使用序列到序列的方法解决。值得一提的是,虽然前面提到的这些任务可以利用序列到序列的方式解决,但是许多情况下效果不如其最常用的方式(如利用序列标注方法解决命名实体识别)。
        对于像机器翻译这一类经典的序列到序列任务,采用基于神经网络的方法具有非常大的优势。在早期的相关研究被提出后不久,基于神经网络序列到序列的机器翻译模型效果就迅速提升并超过了更为传统的统计机器翻译模型,成为主流的机器翻译方案。因此,本节主要介绍基于神经网络的序列到序列方法,包括模型、学习和解码。随后介绍序列到序列模型中常用的指针网络与拷贝机制。最后介绍序列到序列任务的一些延伸和扩展。

2. 基于神经网络的序列到序列模型

        序列到序列模型与上个章节介绍的语言模型十分类似,都需要在已有文字序列的基础上预测下一个词的概率分布。其区别是,语言模型只需建模一个序列, 而序列到序列模型需要建模两个序列,因此需要包含两个模块:一个编码器用于处理源序列,一个解码器用于生成目标序列。本小节将依次介绍基于循环神经网络、注意力机制以及 Transformer的序列到序列模型。

2.1 循环神经网络

        如下图所示, 基于循环神经网络(包括长短期记忆等变体)的序列到序列模型与前几个章节介绍的循环神经网络非常相似,但是按输入不同分成了编码器、解码器两部分, 其中编码器依次接收源序列的词,但不计算任何输出。编码器最后一步的隐状态成为解码器的初始隐状态,这个隐状态向量有时称作上下文向量( context vector),它编码了整个源序列的信息。解码器在第一步接收特殊符号“< sos>”作为目标序列的起始符, 并预测第一个词的概率分布,从中解码出第一个词(解码方法将在下面讨论);随后将第一个词作为下一步的输入, 继续解码第二个词,以此类推, 直到最后解码出终止符“< oos>”,意味着目标序列已解码完毕。这种方式即前面所介绍的自回归过程。

        下面介绍基于循环神经网络的编码器和解码器的代码实现。首先是作为编码器的循环神经网络。

import torch
import torch.nn as nnclass RNNEncoder(nn.Module):def __init__(self, vocab_size, hidden_size):super(RNNEncoder, self).__init__()# 隐层大小self.hidden_size = hidden_size# 词表大小self.vocab_size = vocab_size# 词嵌入层self.embedding = nn.Embedding(self.vocab_size,\self.hidden_size)self.gru = nn.GRU(self.hidden_size, self.hidden_size,\batch_first=True)def forward(self, inputs):# inputs: batch * seq_len# 注意门控循环单元使用batch_first=True,因此输入需要至少batch为1features = self.embedding(inputs)output, hidden = self.gru(features)return output, hidden

         接下来是作为解码器的另一个循环神经网络的代码实现。

class RNNDecoder(nn.Module):def __init__(self, vocab_size, hidden_size):super(RNNDecoder, self).__init__()self.hidden_size = hidden_sizeself.vocab_size = vocab_size# 序列到序列任务并不限制编码器和解码器输入同一种语言,# 因此解码器也需要定义一个嵌入层self.embedding = nn.Embedding(self.vocab_size, self.hidden_size)self.gru = nn.GRU(self.hidden_size, self.hidden_size,\batch_first=True)# 用于将输出的隐状态映射为词表上的分布self.linear = nn.Linear(self.hidden_size, self.vocab_size)# 解码整个序列def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):batch_size = encoder_outputs.size(0)# 从<sos>开始解码decoder_input = torch.empty(batch_size, 1,\dtype=torch.long).fill_(SOS_token)decoder_hidden = encoder_hiddendecoder_outputs = []# 如果目标序列确定,最大解码步数确定;# 如果目标序列不确定,解码到最大长度if target_tensor is not None:seq_length = target_tensor.size(1)else:seq_length = MAX_LENGTH# 进行seq_length次解码for i in range(seq_length):# 每次输入一个词和一个隐状态decoder_output, decoder_hidden = self.forward_step(\decoder_input, decoder_hidden)decoder_outputs.append(decoder_output)if target_tensor is not None:# teacher forcing: 使用真实目标序列作为下一步的输入decoder_input = target_tensor[:, i].unsqueeze(1)else:# 从当前步的输出概率分布中选取概率最大的预测结果# 作为下一步的输入_, topi = decoder_output.topk(1)# 使用detach从当前计算图中分离,避免回传梯度decoder_input = topi.squeeze(-1).detach()decoder_outputs = torch.cat(decoder_outputs, dim=1)decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)# 为了与AttnRNNDecoder接口保持统一,最后输出Nonereturn decoder_outputs, decoder_hidden, None# 解码一步def forward_step(self, input, hidden):output = self.embedding(input)output = F.relu(output)output, hidden = self.gru(output, hidden)output = self.out(output)return output, hidden

        

2.2 注意力机制

        在序列到序列循环神经网络上加入注意力机制的方式同样与上一章节介绍的方式非常相似,区别在于,注意力机制在这里仅用于解码时建模从目标序列到源序列的依赖关系。具体而言,在解码的每一步,将解码器输出的隐状态特征作为查询,将编码器计算的源序列中每个元素的隐状态特征作为键和值,从而计算注意力输出向量; 这个输出向量会与解码器当前步骤的隐状态特征一起用于预测目标序列的下一个元素。
        序列到序列中的注意力机制使得解码器能够直接“看到”源序列,而不再仅依赖循环神经网络的隐状态传递源序列的信息。此外,注意力机制提供了一种类似于人类处理此类任务时的序列到序列机制。人类在进行像翻译这样的序列到序列任务时,常常会边看源句边进行翻译,而不是一次性读完源句之后记住它再翻译, 而注意力机制模仿了这个过程。最后,注意力机制为序列到序列模型提供了一些可解释性: 通过观察注意力分布,可以知道解码器生成每个词时在注意源句中的哪些词,这可以看作源句和目标句之间的一种“软性”对齐。
        下面介绍基于注意力机制的循环神经网络解码器的代码实现。我们使用一个注意力层来计算注意力权重,其输入为解码器的输入和隐状态。这里使用 Bahdanau注意力( Bahdanau attention) , 这是序列到序列模型中应用最广泛的注意力机制,特别是对于机器翻译任务。该注意力机制使用一个对齐模型( alignment model) 来计算编码器和解码器隐状态之间的注意力分数,具体来讲就是一个前馈神经网络。相比于点乘注意力, Bahdanau注意力利用了非线性变换。

import torch.nn.functional as Fclass BahdanauAttention(nn.Module):def __init__(self, hidden_size):super(BahdanauAttention, self).__init__()self.Wa = nn.Linear(hidden_size, hidden_size)self.Ua = nn.Linear(hidden_size, hidden_size)self.Va = nn.Linear(hidden_size, 1)def forward(self, query, keys):# query: batch * 1 * hidden_size# keys: batch * seq_length * hidden_size# 这一步用到了广播(broadcast)机制scores = self.Va(torch.tanh(self.Wa(query) + self.Ua(keys)))scores = scores.squeeze(2).unsqueeze(1)weights = F.softmax(scores, dim=-1)context = torch.bmm(weights, keys)return context, weightsclass AttnRNNDecoder(nn.Module):def __init__(self, vocab_size, hidden_size):super(AttnRNNDecoder, self).__init__()self.hidden_size = hidden_sizeself.vocab_size = vocab_sizeself.embedding = nn.Embedding(self.vocab_size, self.hidden_size)self.attention = BahdanauAttention(hidden_size)# 输入来自解码器输入和上下文向量,因此输入大小为2 * hidden_sizeself.gru = nn.GRU(2 * self.hidden_size, self.hidden_size,\batch_first=True)# 用于将注意力的结果映射为词表上的分布self.out = nn.Linear(self.hidden_size, self.vocab_size)# 解码整个序列def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):batch_size = encoder_outputs.size(0)# 从<sos>开始解码decoder_input = torch.empty(batch_size, 1, dtype=\torch.long).fill_(SOS_token)decoder_hidden = encoder_hiddendecoder_outputs = []attentions = []# 如果目标序列确定,最大解码步数确定;# 如果目标序列不确定,解码到最大长度if target_tensor is not None:seq_length = target_tensor.size(1)else:seq_length = MAX_LENGTH# 进行seq_length次解码for i in range(seq_length):# 每次输入一个词和一个隐状态decoder_output, decoder_hidden, attn_weights = \self.forward_step(decoder_input, decoder_hidden, encoder_outputs)decoder_outputs.append(decoder_output)attentions.append(attn_weights)if target_tensor is not None:# teacher forcing: 使用真实目标序列作为下一步的输入decoder_input = target_tensor[:, i].unsqueeze(1)else:# 从当前步的输出概率分布中选取概率最大的预测结果# 作为下一步的输入_, topi = decoder_output.topk(1)# 使用detach从当前计算图中分离,避免回传梯度decoder_input = topi.squeeze(-1).detach()decoder_outputs = torch.cat(decoder_outputs, dim=1)decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)attentions = torch.cat(attentions, dim=1)# 与RNNDecoder接口保持统一,最后输出注意力权重return decoder_outputs, decoder_hidden, attentions# 解码一步def forward_step(self, input, hidden, encoder_outputs):embeded =  self.embedding(input)# 输出的隐状态为1 * batch * hidden_size,# 注意力的输入需要batch * 1 * hidden_sizequery = hidden.permute(1, 0, 2)context, attn_weights = self.attention(query, encoder_outputs)input_gru = torch.cat((embeded, context), dim=2)# 输入的隐状态需要1 * batch * hidden_sizeoutput, hidden = self.gru(input_gru, hidden)output = self.out(output)return output, hidden, attn_weights

2.3 Transformer

        Transformer模型同样也可以用于序列到序列任务。编码器与上一章介绍的 Transformer结构几乎相同,仅有两方面区别。一方面,由于不需要像语言模型那样每一步只能看到前置序列,而是需要看到完整的句子, 因此掩码多头自注意力模块中去除了注意力掩码。另一方面,由于编码器不需要输出,因此去掉了顶层的线性分类器。
        解码器同样与上一章介绍的 Transformer结构几乎相同,但在掩码多头自注意力模块之后增加了一个交叉多头注意力模块,以便在解码时引入编码器所计算的源序列的信息。交叉注意力模块的设计与上面介绍的循环神经网络上的注意力机制是类似的。具体而言,交叉注意力模块使用解码器中自注意力模块的输出计算查询,使用编码器顶端的输出计算键和值,不使用任何注意力掩码, 其他部分与自注意力模块一样。

        基于 Transformer的序列到序列模型通常也使用自回归的方式进行解码, 但 Transformer不同位置之间的并行性,使得非自回归方式的解码成为可能。非自回归解码器的结构与自回归解码器类似,但解码时需要先预测目标句的长度,将该长度对应个数的特殊符号作为输入,此外自注意力模块不需要掩码,所有位置的计算并行执行。有关具体细节这里不再展开。

        接下来我们复用上一章的代码,实现基于 Transformer的编码器和解码器。

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import sys
sys.path.append('./code')
from transformer import *class TransformerEncoder(nn.Module):def __init__(self, vocab_size, max_len, hidden_size, num_heads,\dropout, intermediate_size):super().__init__()self.embedding_layer = EmbeddingLayer(vocab_size, max_len,\hidden_size)# 直接使用TransformerLayer作为编码层,简单起见只使用一层self.layer = TransformerLayer(hidden_size, num_heads,\dropout, intermediate_size)# 与TransformerLM不同,编码器不需要线性层用于输出def forward(self, input_ids):# 这里实现的forward()函数一次只能处理一句话,# 如果想要支持批次运算,需要根据输入序列的长度返回隐状态assert input_ids.ndim == 2 and input_ids.size(0) == 1seq_len = input_ids.size(1)assert seq_len <= self.embedding_layer.max_len# 1 * seq_lenpos_ids = torch.unsqueeze(torch.arange(seq_len), dim=0)attention_mask = torch.ones((1, seq_len), dtype=torch.int32)input_states = self.embedding_layer(input_ids, pos_ids)hidden_states = self.layer(input_states, attention_mask)return hidden_states, attention_mask
class MultiHeadCrossAttention(MultiHeadSelfAttention):def forward(self, tgt, tgt_mask, src, src_mask):"""tgt: query, batch_size * tgt_seq_len * hidden_sizetgt_mask: batch_size * tgt_seq_lensrc: keys/values, batch_size * src_seq_len * hidden_sizesrc_mask: batch_size * src_seq_len"""# (batch_size * num_heads) * seq_len * (hidden_size / num_heads)queries = self.transpose_qkv(self.W_q(tgt))keys = self.transpose_qkv(self.W_k(src))values = self.transpose_qkv(self.W_v(src))# 这一步与自注意力不同,计算交叉掩码# batch_size * tgt_seq_len * src_seq_lenattention_mask = tgt_mask.unsqueeze(2) * src_mask.unsqueeze(1)# 重复张量的元素,用以支持多个注意力头的运算# (batch_size * num_heads) * tgt_seq_len * src_seq_lenattention_mask = torch.repeat_interleave(attention_mask,\repeats=self.num_heads, dim=0)# (batch_size * num_heads) * tgt_seq_len * \# (hidden_size / num_heads)output = self.attention(queries, keys, values, attention_mask)# batch * tgt_seq_len * hidden_sizeoutput_concat = self.transpose_output(output)return self.W_o(output_concat)# TransformerDecoderLayer比TransformerLayer多了交叉多头注意力
class TransformerDecoderLayer(nn.Module):def __init__(self, hidden_size, num_heads, dropout,\intermediate_size):super().__init__()self.self_attention = MultiHeadSelfAttention(hidden_size,\num_heads, dropout)self.add_norm1 = AddNorm(hidden_size, dropout)self.enc_attention = MultiHeadCrossAttention(hidden_size,\num_heads, dropout)self.add_norm2 = AddNorm(hidden_size, dropout)self.fnn = PositionWiseFNN(hidden_size, intermediate_size)self.add_norm3 = AddNorm(hidden_size, dropout)def forward(self, src_states, src_mask, tgt_states, tgt_mask):# 掩码多头自注意力tgt = self.add_norm1(tgt_states, self.self_attention(\tgt_states, tgt_states, tgt_states, tgt_mask))# 交叉多头自注意力tgt = self.add_norm2(tgt, self.enc_attention(tgt,\tgt_mask, src_states, src_mask))# 前馈神经网络return self.add_norm3(tgt, self.fnn(tgt))class TransformerDecoder(nn.Module):def __init__(self, vocab_size, max_len, hidden_size, num_heads,\dropout, intermediate_size):super().__init__()self.embedding_layer = EmbeddingLayer(vocab_size, max_len,\hidden_size)# 简单起见只使用一层self.layer = TransformerDecoderLayer(hidden_size, num_heads,\dropout, intermediate_size)# 解码器与TransformerLM一样,需要输出层self.output_layer = nn.Linear(hidden_size, vocab_size)def forward(self, src_states, src_mask, tgt_tensor=None):# 确保一次只输入一句话,形状为1 * seq_len * hidden_sizeassert src_states.ndim == 3 and src_states.size(0) == 1if tgt_tensor is not None:# 确保一次只输入一句话,形状为1 * seq_lenassert tgt_tensor.ndim == 2 and tgt_tensor.size(0) == 1seq_len = tgt_tensor.size(1)assert seq_len <= self.embedding_layer.max_lenelse:seq_len = self.embedding_layer.max_lendecoder_input = torch.empty(1, 1, dtype=torch.long).\fill_(SOS_token)decoder_outputs = []for i in range(seq_len):decoder_output = self.forward_step(decoder_input,\src_mask, src_states)decoder_outputs.append(decoder_output)if tgt_tensor is not None:# teacher forcing: 使用真实目标序列作为下一步的输入decoder_input = torch.cat((decoder_input,\tgt_tensor[:, i:i+1]), 1)else:# 从当前步的输出概率分布中选取概率最大的预测结果# 作为下一步的输入_, topi = decoder_output.topk(1)# 使用detach从当前计算图中分离,避免回传梯度decoder_input = torch.cat((decoder_input,\topi.squeeze(-1).detach()), 1)decoder_outputs = torch.cat(decoder_outputs, dim=1)decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)# 与RNNDecoder接口保持统一return decoder_outputs, None, None# 解码一步,与RNNDecoder接口略有不同,RNNDecoder一次输入# 一个隐状态和一个词,输出一个分布、一个隐状态# TransformerDecoder不需要输入隐状态,# 输入整个目标端历史输入序列,输出一个分布,不输出隐状态def forward_step(self, tgt_inputs, src_mask, src_states):seq_len = tgt_inputs.size(1)# 1 * seq_lenpos_ids = torch.unsqueeze(torch.arange(seq_len), dim=0)tgt_mask = torch.ones((1, seq_len), dtype=torch.int32)tgt_states = self.embedding_layer(tgt_inputs, pos_ids)hidden_states = self.layer(src_states, src_mask, tgt_states,\tgt_mask)output = self.output_layer(hidden_states[:, -1:, :])return output

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/52847.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中仕公考怎么样?公务员考试什么时候补录?

公务员考试补录的时间和方法通常因地区和职位的不同有所区别&#xff0c;一般来说&#xff0c;这一过程会在面试、体检和考核环节完成后启动。 如果在招录过程中出现职位空缺或者并未全部招满的情况&#xff0c;就会进行补录。用人单位会通过其官方或公告形式公布相关信息&…

【数据结构】队列(Queue)

目录 队列概念 ​方法 队列模拟实现 链表实现队列 入队列 出队列 获取队头元素 数组实现队列 入队列 出队列 返回头队列 返回尾队列 完整代码 双链表实现队列 数组实现队列&#xff08;设计循环队列&#xff09; 队列概念 队列&#xff1a;只允许在一段进行插入…

鸿蒙HarmonyOS开发:如何灵活运用服务卡片提升用户体验

文章目录 一、ArkTS卡片相关模块二、卡片事件能力说明三、卡片事件的主要使用场景3.1、使用router事件跳转到指定UIAbility3.1.1、卡片内按钮跳转到应用的不同页面3.1.2、服务卡片的点击跳转事件 3.2、通过message事件刷新卡片内容3.2.1、在卡片页面调用postCardAction接口触发…

Linux 背景、命令

一、嵌入式、Linux背景 1、嵌入式&#xff1a; 硬件与软件相结合 定制、为硬件设计相关代码来进行操作&#xff0c;代码测试&#xff0c;烧进板子&#xff0c;通过语音、图像、按钮等操作方式来调用。 2、操作系统种类&#xff1a; Dos&#xff0c;Windows&#xff0c;Uni…

数据分析处理库(pandas)

目录 数据预处理 数据读取 DataFrame结构 数据索引 创建DataFrame Series操作 数据分析 统计分析 pivot数据透视表 groupby操作 常用函数操作 Merge操作 排序操作 缺失值处理 apply自定义函数 时间操作 绘图操作 大数据处理技巧 数值类型转换 属性类型转换…

51单片机——实时时钟

1、DS1302介绍 DS1302是由美国DALLAS公司推出的具有涓细电流充电能力的低功耗实时时钟芯片。它可以对年、月、日、周、时、分、秒进行计时&#xff0c;且具有闰年补偿等多种功能 RTC(Real Time Clock)&#xff1a;实时时钟&#xff0c;是一种集成电路&#xff0c;通常称为时钟…

2024年国家自然科学基金即将公布,如何第一时间知道评审结果?

公众号&#xff1a;生信漫谈&#xff0c;获取最新科研信息&#xff01; 2024年国家自然科学基金即将公布&#xff0c;如何第一时间知道评审结果&#xff1f;https://mp.weixin.qq.com/s?__bizMzkwNjQyNTUwMw&mid2247486995&idx1&snd3f8a1fe0f5d210db2048ca1b3933…

【开发笔记】Notepad++配置

Notepad配置 Notepad保护色配置 settings --> Style Configurator 选择 Enable olobal foreground colourEnable global background colour 设置背景色 点击 Save & Close按钮&#xff0c;完成保存。 设置 Unix换行符

算法day08 链表

4.链表_哔哩哔哩_bilibili 一、判断链表为回文 暴力方式&#xff1a; 从链表头开始将链表每一个元素值依次放入数组中&#xff0c;按下标比较值。 从链表尾开始将链表一半元素值放入stack栈中&#xff1b;每次弹栈比较 弹出的值和 链表值。 快慢指针&#xff1a; 假设有这样一个…

【Threejs进阶教程-着色器篇】6. 2D SDF(三) 移动图形,限制图形,绘制多个图形

2D SDF 移动与合并图形 前五篇地址&#xff0c;建议按顺序学习本篇使用到的初始代码减小扩散范围clamp函数修改maxDistance来修改扩散范围 移动扩散中心添加第二个扩散点降低点的同步率调整参数来优化效果添加更多扩散点 完整源码如有不明白的&#xff0c;可以在下方留言或者加…

【GIT】Idea中的git命令使用-全网最新详细(包括现象含义)

原文网址&#xff1a;【GIT】Idea中的git命令使用-全网最新详细&#xff08;包括现象含义&#xff09; 文章目录 **命令1&#xff1a;查看当前所处分支&#xff1a;****命令2&#xff1a;拉取最新代码&#xff1a;****命令3&#xff1a;切换分支&#xff1a;****命令4&#xff…

MAC 、 IP ARP

MAC地址 基本概念 MAC地址是以太网的MAC子层所使用的地址——数据链路层 使用点对点信道的数据链路层不需要使用地址 使用广播信道的数据链路层必须使用地址来区分各主机 实现同一个广播信道上的不同主机之间的通信 每个主机都必须要有一个唯一的表示——一个数据链路层地址…

基于Java+SpringBoot+Vue的学生评奖评优管理系统的设计与实现

基于JavaSpringBootVue的学生评奖评优管理系统的设计与实现 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345; 某信 gzh 搜索【智…

2024 年的 Web3 游戏:演变、趋势和市场动态

Web3 游戏行业在经历了多年的快速发展和变革之后&#xff0c;正在2024年迎来全新的阶段。这个行业从最初的边玩边赚&#xff08;Play-to-Earn, P2E&#xff09;模式出发&#xff0c;如今正在向更为平衡的“边玩边赚”模式转型。这种转型不仅解决了早期 P2E 模式下存在的可持续性…

EmguCV学习笔记 VB.Net 9.1 VideoCapture类

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…

编译LineageOS模拟器镜像,导出到AndroidStudio

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 源码下载 LineageOS官网&#xff1a;https://lineageos.org/ LineageOS源码 github 地址&#xff1a;https://github.com/LineageOS/android LineageOS源码国…

编写一个每次随机生成 10个 0(包括) 到 100 之间的随机正整数。

编写一个每次随机生成 10个 0&#xff08;包括&#xff09; 到 100 之间的随机正整数。 package cn.itcast.example;import java.util.Iterator; import java.util.Random; public class example {public static void main (String[] arge) {System.out.println("Math.ra…

QNN:基于QNN+example重构之后的yolov8det部署

QNN是高通发布的神经网络推理引擎&#xff0c;是SNPE的升级版&#xff0c;其主要功能是&#xff1a; 完成从Pytorch/TensorFlow/Keras/Onnx等神经网络框架到高通计算平台的模型转换&#xff1b; 完成模型的低比特量化&#xff08;int8&#xff09;&#xff0c;使其能够运行在高…

超长二进制利用Integer转换

1.Integer缺点 目前测试Integer只能一次性转4*7位二进制数&#xff0c;也就是7位16进制&#xff0c;故进行改进 2.改进 操作&#xff1a;每四位二进制一转换&#xff0c;以免到上限报错 注解格式&#xff1a;序号&#xff08;代码顺序&#xff09;解释 public class Main {…

《PCI Express体系结构导读》随记 —— 第II篇 第7章 PCIe总线的数据链路层与物理层(2)

接前一篇文章&#xff1a;《PCI Express体系结构导读》随记 —— 第II篇 第7章 PCIe总线的数据链路层与物理层&#xff08;1&#xff09; 7.1 数据链路层的组成结构 数据链路层使用ACK/NAK协议发送和接收TLP&#xff0c;由发送部件和接收部件组成。其中&#xff0c;发送部件由…