【云原生系列之SkyWalking的部署】

1、分布式链路追踪

1.1概念

在较大的web集群和微服务环境中,客户端的一次请求需要经过不同的模块,多个不同中间件,多个不同机器一起相互协作才能处理完成客户端的请求,而在这一系列的请求过程之中,处理流程可能是串行执行,也可能是并行执行.那么如何确定客户端的一次请求到结束背后究竟调用了哪些应用以及哪些模块并经过了哪些节点,并且每个模块的调用先后顺序是怎么样的,每个模块的处理响应性能如何?后期随着业务系统的不断增多,业务处理逻辑会越来越复杂,而分布式系统中急需要一套链路追踪(Trace)系统来解决这个问题,从而让运维人员对整个业务系统一目了然,了如指掌。
分布式服务追踪系统是整个分布式系统中跟踪一个用户请求的完整过程,包括数据采集,数据传输,数据存储,数据分析和数据可视化,获取并存储和分享此类追踪可以让运维清晰了解用户请求与业务系统交互背后的整个调用关系,链路追踪是针对调试和监控微服务不可或缺的帮手
Dapper是Google 2008年开始内部使用的链路追踪系统。

1.2 Dapper采集

1.2.1 分布式追踪方法

下图中展现的是一个有5台服务器相关的一个服务,包括:前端(A),两个中间层(B和C),以及两个后端(D和E)。
当一个用户(这个用例的发起人)发起一个请求时,首先到达前端(A),然后发送两个RPC到服务器B和C,B收到请求后会马上做出响应,但是C需要和后端的D和E交互之后再返还给A,由A来响应最初的客户请求,对于这样一个请求,简单实用的分布式跟踪的实现,就是为服务器上每一次发送和接收动作来收集跟踪标识符(message identifiers)和时间戳(timestamped events)。
  1. 黑盒法(black-box)

    无需任何侵入代码,它的优势在于无需修改代码,缺点在于记录不精确,且需要大量的数据才能推导出服务间的关系
    
  2. 标记法(annotation-based)

    需要为每个请求打标记,并通过一个全局标识符将请求途径的所有服务信息串联,复盘整个链路,标记法记录准备,但缺点是需要将标记代码注入到每个服务中
    

在这里插入图片描述

Span代表系统中具有开始时间和执行时长的请求跨度,span之间通过嵌入或者顺序排列建立逻辑因果关系.
任何一个Span可以包含来自不同的主机信息,这些也要记录下来.事实上每一个RPC Span可以包含客户端和服务器两个过程注释.由于客户端和服务器上的时间戳来自不同主机,还必须考虑到时间偏差,在分析工具就利用了时间偏差,即RPC客户端发送一个请求之后服务端才能收到,对应响应也是一样的.这样一来服务器的RPC就有一个时间戳的一个开始和结束,然后就计算出时间消耗.

RPC是远程调用的意思

1.2.2 Dapper跟踪记录和收集管道的过程

  1. span数据写入本地日志文件中
  2. Dapper守护进程和收集组件把这些数据从生产环境的主机中进行读取
  3. 最终写入Dapper的数据仓库中

一个跟踪被设计成Bigtable中的一行,每一列相关于Span Bigtable的支持稀疏表格布局正适合这种情况,因为每一次跟踪可以有任意多个spac

1.2.3 Dapper的特点

  1. Dapper资源占用很小
  2. Dapper守护进程CPU使用率从来没超过0.3%单核CPU。而且只有少量的内存使用,另外还限制了Dapper守护进程内核scheduler最低的优先级,以防在一台高负载的服务器上发生cpu竞争。一个span在仓库传输中占用平均426byte

1.2.4 Dapper应用场景

  1. 性能分析:对请求延迟的目标进行跟踪,并对容易优化的地方进行定位
  2. 正确性分析:发现一些只读器请求,应该是访问从库但却访问了主库等类似业务场景
  3. 理解系统:全局优化系统,理解每个查询的整体代价
  4. 测试新版本:发现新版本的bug和性能问题
  5. 解决依赖关系:找到服务之间的依赖关系

1.3APM的特点

APM系统(Application Performance Management)性能管理系统

早起APM功能主要在监控CPU,内存,IO,网络等资源上
微服务兴起后,系统功能被模块化,再加上k8s与容器化的兴起及应用数据量的爆炸式增长,各模块和服务之间的调用链路,响应时间,负载等越来越不好通过传统的工具进行监控和统计,此时APM系统诞生了.

2、skywalking

2.1特点

  1. 实现从请求跟踪,指标收集和日志记录的完整信息记录
  2. 多语言自动探针,支持java,go,python,php,nodejs,Lua,Rust等客户端
  3. 内置服务器网络可观察性,支持从Istio+Envoy Service Mesh收集和分析数据
  4. 模块化架构,存储,集群管理,使用插件集合都可以进行自由选择
  5. 支持告警
  6. 优秀的可视化效果

2.2 Skywalking组件

OAP平台(Observability Analysis Platform,可观测性分析平台)或OAP Server,它是一个高度组件化的轻量级分析程序,由兼容各种探针Receiver,流式分析内核和查询内核三部分构成.

探针:基于无侵入式的收集,并通过HTTP或者gRPC方式发送数据到OAP Server

存储实现(Sotrage Implementors):SkyWalking OAP Server支持多种存储实现并提供了标准接口,可支持不同的存储后端

UI模块:Skywalking通过标准的GraphQL协议进行统计数据查询和展示

面相协议设计:面相协议设计时Skywalking从5.x开始严格遵守的首要设计原则,组件之间使用标准协议进行数据交互

2.3SkyWalking协议

2.3.1探针协议:

探针上报协议: 协议包括语言探针的注册,Metrics数据上报,Tracing数据上报等标准,Java,Go等探针都需要严格遵守此协议的标准.

探针交互协议:因为分布式追踪环境,探针间需要借助HTTP Header,MQ Header在应用之间进行通信和交互,探针交互协议就定义了交互的数据格式

Service Mesh 协议: 是SkyWalking对Service Mesh抽象的专有协议,任何Mesh类的服务都可以通过此协议直接上传指标数据,用于计算服务的指标数据和绘制拓扑图.

第三方协议: 对大型的第三方开源项目尤其是Service Mesh核心平台Istio和Envoy,提供核心协议适配,支持针对Istio+Envoy Service Mesh进行无缝对接.

2.3.2查询协议:

元数据查询: 查询在skywalking注册的服务,服务实例,Endpoint等元数据信息.

拓扑关系查询: 查询全局,或单个服务,Endpoint的拓扑图及依赖关系.

Metrics指标查询:区间范围均值查询及Top N排名查询等.

Trace查询: 追踪数据的明细查询.

告警查询: 基于表达式,判断指标数据是否超出阈值.

2.4 Skywalking模块

在这里插入图片描述

1、探针负责收集数据
2、前端负责展示数据
3、OAP Server负责从后端存储读写数据
4、后端存储负责持久化数据

2.5SkyWalking优势

  1. 兼容性好: 支持传统的分布式部署架构dubbo和spring cloud,也支持云原生中的Istio和Envoy
  2. 易于部署和后期维护:组件化,可自定义部署,后期横向扩容简单.
  3. 高性能:每天数T的数据无压力
  4. 易于二次开发:标准的http和grpc协议,开源的项目,企业可以自主二次开发.

2、SkyWalked部署

在这里插入图片描述

由于是测试环境,这里的es就不做集群了

服务器名IP地址服务端口作用
SkyWalking-Server172.17.1.608080(UI展示端口) 11800(写数据的端口)12800(读数据的端口)OAP观测性分析平台Server段
es172.17.1.619200ES数据库Version: 8.5.1

2.1创建目录并下载安装包

1、安装java环境
apt install openjdk-11-jdk -y
root@sk:/apps/apache-skywalking-apm-bin/config# java --version
openjdk 11.0.24 2024-07-16
OpenJDK Runtime Environment (build 11.0.24+8-post-Ubuntu-1ubuntu320.04)
OpenJDK 64-Bit Server VM (build 11.0.24+8-post-Ubuntu-1ubuntu320.04, mixed mode, sharing)2、下载SkyWalk安装包
mkdir /apps && cd /apps
wget https://dlcdn.apache.org/skywalking/9.2.0/apache-skywalking-apm-9.2.0.tar.gz
tar xf apache-skywalking-apm-9.2.0.tar.gz

2.2 修改配置文件

root@sk:/apps/apache-skywalking-apm-bin/config# pwd
/apps/apache-skywalking-apm-bin/config
#修改133行和136行,指定elasticsearch为数据库及elasticsearch的集群地址
root@sk:/apps/apache-skywalking-apm-bin/config# vim application.yml
storage:selector: ${SW_STORAGE:elasticsearch}elasticsearch:namespace: ${SW_NAMESPACE:""}## 单机ESclusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:172.17.1.61:9200}## ES集群多个ip用逗号,分割## clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:172.17.1.61:9200,172.17.1.62:9200,172.17.1.63:9200}#其他几个重要的参数
#存储最多7天的内容,过期数据将会清理。因此请根据实际需求进行调整 
recordDataTTL: ${SW_STORAGE_ES_RECORD_DATA_TTL:7} # Unit is day 
# 每10秒刷新数据到收集器中
flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:10}
# 提供2个并发请求,如果系统业务量大,日志产生的非常快,请根据实况调整
concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2}

2.3 配置SkyWaing启动文件

root@sk:~# cat /etc/systemd/system/skywalking.service
[Unit]
Description=Apache Skywalking
After=network.target
[Service]
Type=oneshot
User=root
WorkingDirectory=/apps/apache-skywalking-apm-bin/bin
ExecStart=/bin/bash /apps/apache-skywalking-apm-bin/bin/startup.sh
RemainAfterExit=yes
RestartSec=5
[Install]
WantedBy=multi-user.targetroot@sk:~# systemctl daemon-reload
root@sk:~# systemctl restart skywalking.service

2.4 验证

服务起来后es上应该会自动创建skywalking所需要的库
在这里插入图片描述

root@sk:~# ss -ntl|grep 8080
LISTEN  0        4096                   *:8080                 *:*
root@sk:~# ss -ntl|grep 11800
LISTEN  0        4096                   *:11800                *:*
root@sk:~# ss -ntl|grep 12800
LISTEN  0        4096                   *:12800                *:*

2.5 报错

在这里插入图片描述
原因:es库的地址配错了,提示库不存在,无法自动创建

解决方案:修改为正确的es库IP

原因:es库的地址配错了,提示库不存在,无法自动创建

解决方案:修改为正确的es库IP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/52570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【微信小程序】全局数据共享 - MobX

1. 什么是全局数据共享 2. 小程序中的全局数据共享方案 3.Mobx的使用 1.npm init -y(根据实际情况选择) 在小程序项目中,可以通过 npm 的方式引入 MobX 。 如果你还没有在小程序中使用过 npm ,那先在小程序目录中执行命令: npm init -y2. …

19.神经网络 - 线性层及其他层介绍

神经网络 - 线性层及其他层介绍 1.批标准化层–归一化层(不难,自学看官方文档) Normalization Layers torch.nn — PyTorch 1.10 documentation BatchNorm2d — PyTorch 1.10 documentation 对输入采用Batch Normalization,可…

[数据集][目标检测]光伏发电板红外图像鸟粪检测数据集VOC+YOLO格式173张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):173 标注数量(xml文件个数):173 标注数量(txt文件个数):173 标注类别…

sentinel安装

Releases alibaba/Sentinel GitHub java -jar sentinel-dashboard-1.8.8.jar 默认启动端口是8080 修改端口启动 java -jar sentinel-dashboard-1.8.8.jar --server.port8888 localhost:配置的端口 账密都是sentinel

本地部署Xinference实现智能体推理工作流(一)

提示:没有安装Docker的需要先提前安装好Docker 第一篇章 使用AutoDL平台快速部署xinference 备注:若使用AutoDL平台,以下过程使用无卡模型开机即可(省钱) 1. 下载Dify源码 Github下载Dify:https://github.com/langgenius/dify 2. 快速启动…

通过观测云 eBPF Tracing 实现无埋点的全链路追踪

前言 随着微服务架构的普及和系统复杂度的增加,对应用程序的可观测性要求也越来越高。传统的监控方法通常需要在应用程序中添加代码来记录和追踪重要信息,这种方法可能会增加系统的负担,并且在复杂系统中维护难度较大。 eBPF(Ex…

告别PDF格式困扰,2024年PDF转换器推荐

PDF现在已经逐渐成为了文件传输的主流格式了,它有保存文件页面版式的优点,但是这个格式编辑对大部分人来说还是不那么方便,日常我们还是习惯将它们转换成我们常见的 文本格式来操作。今天我分享一下可以实现PDF格式转换的pdf转换器有哪些吧。…

SX_c语言字符串赋值 “multiple definition of .. first defined here”问题_21

字符串赋值问题&#xff1a; #include <stdio.h> #include <string.h>char* my_string_cat(int position, int slot, char* content){char* gnsst NULL;static char retvalue[50];memset(retvalue, \0, sizeof(retvalue));if(position 0){//头部if(slot 0){//卡…

【视频讲解】SMOTEBoost、RBBoost和RUSBoost不平衡数据集的集成分类酵母数据集、治癌候选药物|数据分享...

全文链接&#xff1a;https://tecdat.cn/?p37502 分析师&#xff1a;Zilin Wu 在当今的大数据时代&#xff0c;科研和实际应用中常常面临着海量数据的处理挑战。在本项目中&#xff0c;我们拥有上万条数据&#xff0c;这既是宝贵的资源&#xff0c;也带来了诸多难题。一方面&a…

【递归回溯之floodfill算法专题练习】

1. 图像渲染 class Solution {int dx[4] {0, 0, -1, 1};int dy[4] {1, -1, 0, 0};int m, n;int oldcolor; public:vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {oldcolor image[sr][sc]; // 保存原…

MySQL数据库MVCC机制底层原理详解

mvcc机制即多版本并发控制 当在事务中使用了写操作&#xff08;增删改&#xff09;语句时会给当前事务生成一个事务id&#xff0c;事务id是递增的 同时&#xff0c;对于被修改的行的数据会创建一个数据版本 &#xff0c;这个数据版本除了包含原有的字段还会包含一个事务id和一…

Linux驱动开发—创建总线,创建属性文件

文章目录 1.什么是BUS&#xff1f;1.1总线的主要概念1.2总线的操作1.3总线的实现 2.创建总线关键结构体解析2.1注册总线到系统2.2 struct bus_type *bus 解析 3.实验结果分析1. devices 目录2. drivers 目录3. drivers_autoprobe 文件4. drivers_probe 文件5. uevent 文件 4.在…

【力扣】划分为k个相等的子集

&#x1f525;博客主页&#xff1a; 我要成为C领域大神&#x1f3a5;系列专栏&#xff1a;【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 给定一个整数数组 …

【qt】锁

线程安全问题. 多线程程序太复杂了. 加锁 把多个线程要访问的公共资源&#xff0c;通过锁保护起来.>把并发执行变成串行执行. Linux mutex 互斥量. C11引入std::mutex Qt 同样也提供了对应的锁&#xff0c;来针对系统提供的锁进行封装.QMutex 多个线程进行加锁的对象&…

【生日视频制作】室内告白表白祝福布置霓虹灯AE模板修改文字软件生成器教程特效素材【AE模板】

室内告白表白祝福布置霓虹灯生日视频制作教程AE模板改字生成器 怎么如何做的【生日视频制作】室内告白表白祝福布置霓虹灯AE模板修改文字软件生成器教程特效素材【AE模板】 生日视频制作步骤&#xff1a; 安装AE软件下载AE模板把AE模板导入AE软件修改图片或文字渲染出视频

Signac R|如何合并多个 Seurat 对象 (1)

引言 在本文中演示了如何合并包含单细胞染色质数据的多个 Seurat 对象。为了进行演示&#xff0c;将使用 10x Genomics 提供的四个 scATAC-seq PBMC 数据集&#xff1a; 500-cell PBMC 1k-cell PBMC 5k-cell PBMC 10k-cell PBMC 实战 在整合多个单细胞染色质数据集的过程中&…

SAP与生产制造MPM系统集成案例

一、需求介绍 某公司为保证企业内部生产管理系统的多项基础数据的同步更新&#xff0c;确保各模块间信息的一致性和准确性&#xff0c;对后续的生产计划和物料管理打下基础&#xff0c;该公司将MPM系统和SAP系统经过SAP PO中间件集成平台进行了集成。MPM全称为Manufacturing…

超实用的8个无版权、免费、高清图片素材网站整理

不管是设计、文章配图&#xff0c;还是视频制作&#xff0c;图片都至关重要。但是图片版权一直都是困扰很多设计、自媒体以及企业的大问题。现在&#xff0c;因为图片侵权被告的案例已经是司空见惯了&#xff0c;有的公众号甚至因为图片版权问题遭受致命打击。 1. Pexels Pexe…

Spring框架:开发者的得力伙伴,魅力何在?

目录 一. Spring介绍 二. Spring搭建 三. Spring Bean管理 ▐ 管理方式 ▐ 依赖注入 四. Spring数据访问层管理 五. Spring集成MyBatis 海漫浩浩,我亦苦作舟!大家一起学习,一起进步! 一. Spring介绍 Spring是什么? Spring 是一个轻量级的, IOC 和 AOP 的一站式 J…

如何使用ssm实现基于java web的计算机office课程平台设计与实现+vue

TOC ssm277基于java web的计算机office课程平台设计与实现vue 绪论 1.1 研究背景 现在大家正处于互联网加的时代&#xff0c;这个时代它就是一个信息内容无比丰富&#xff0c;信息处理与管理变得越加高效的网络化的时代&#xff0c;这个时代让大家的生活不仅变得更加地便利…