AI系列:大语言模型的RAG(检索增强生成)技术(上)

前言

大型语言模型(LLM)虽然在生成文本方面表现出色,但仍然存在一些局限性:数据是静态的,而且缺乏垂直细分领域的知识。为了克服这些限制,有时候会进行进一步的模型训练和微调。在实际应用中,我们也常常会运用到RAG技术。

什么是RAG

RAG(Retrieval-Augmented Generation)是一种融合了检索(Retrieval)和生成(Generation)的自然语言处理技术,用于增强大型语言模型(LLM)的性能。RAG的核心思想是让模型在生成回答时,不仅依赖于其内部知识,还能利用外部的信息源,如数据库或知识库,来提供更准确、更丰富的答案。

RAG的基本工作流程通常包括以下几个步骤:

检索(Retrieve):根据用户的查询,从外部知识源检索相关的上下文信息。这通常涉及到使用嵌入模型将用户查询转换为向量,并在向量数据库中执行相似性搜索,以找到最相关的信息。

增强(Augment):将检索到的上下文信息与用户原始查询结合,形成一个新的增强提示(prompt),这个提示将用于引导语言模型生成回答。

生成(Generate):最后,将增强后的提示输入到大型语言模型中,生成最终的回答。

RAG在多种应用场景中都非常有用,包括但不限于问答系统、事实核查、内部工具等。通过RAG,大型语言模型能够提供更加准确和上下文相关的回答,从而提高整体的AI应用性能。

1. 检索(Retrieve)

1.1 检索(Retrieve)之使用搜索引擎

搜索引擎是一种常用的快速检索与查询相关文档的工具,使用搜索引擎可以为语言模型提供更准确的上下文信息,帮助生成更准确的回答。

例如,一些AI厂商在其产品中提供了联网功能,调用搜索引擎进行关键字搜索。用户可以在其产品中输入查询,系统将自动在互联网上进行搜索,并将互联网上的相关结果用于生成回答,极大地丰富了回答的准确性和深度。

下图来自Kimi的网页:

Kimi联网

另外,许多企业级应用也采用搜索引擎(如Elasticsearch)来完成站内的检索任务。Elasticsearch是一个基于Lucene的搜索引擎,通过分布式、RESTful风格的搜索和分析引擎,能够即时地存储、搜索和分析大量数据。

然而,关键字搜索的局限性在于它只能快速检索到与用户查询的相同关键字的文档,而无法处理语义相近但关键字不同的情况。

1.2 检索(Retrieve)之文本嵌入(embedding)技术

为了解决语义识别的问题,文本嵌入(embedding)技术应运而生。

在自然语言处理(NLP)中,文本嵌入技术能够将文本字符串转化为高维空间的向量表示,从而衡量不同文本之间的相似性和相关性。这些向量捕捉了文本的含义,并且可以用于进行比较、搜索和聚类等自然语言处理任务。

embedding模型

以OpenAI为例。OpenAI目前最新的embedding模型为其3代,即text-embedding-3-small和text-embedding-3-large。 默认情况下,对于text-embedding-3-small模型,嵌入向量的维度将是1536;对于text-embedding-3-large模型,维度将是3072。用户可以根据需要通过传递dimensions参数来调整嵌入的维度,以在速度和准确率之间取得平衡。

下图来自OpenAI网站,为embedding接口的返回结果:
在这里插入图片描述

向量数据库

随着AI的发展,处理向量数据的向量数据库变得越来越重要。这些数据库专门设计用于存储、管理和检索向量形式的数据。

使用向量数据库的过程包括分割文档,计算文本段落的embedding,存储原始数据和对应的embedding,并利用用户提出的查询进行相似性搜索。

2. 增强(Augment)

现在我们将检索到的上下文信息与用户原始查询结合,形成一个新的增强提示(prompt),这个提示将用于引导语言模型生成回答。

prompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。已知信息:
{context}用户问:
{query}如果已知信息不包含用户问题的答案,或者已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。
请不要输出已知信息中不包含的信息或答案。
请用中文回答用户问题。
"""

3. 生成(Generate)

最后,将增强后的提示输入到大型语言模型中,生成最终的回答。

后续

在接下来的文章中,我将使用LlamaIndex技术来实现RAG,进一步探讨RAG在实际应用中的实现。

参考

OpenAI embeddings
OpenAI cookbook - Get embeddings from dataset
OpenAI cookbook - Vector databases

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/5078.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于深度学习检测恶意流量识别框架(80+特征/99%识别率)

基于深度学习检测恶意流量识别框架 目录 基于深度学习检测恶意流量识别框架简要示例a.检测攻击类别b.模型训练结果输出参数c.前端检测页面d.前端训练界面e.前端审计界面(后续更新了)f.前端自学习界面(自学习模式转换)f1.自学习模式…

【嵌入式Linux】阻塞与非阻塞IO为何能降低CPU使用率

本文主要记录嵌入式Linux内核中阻塞与非阻塞IO访问的应用,以及解释了为何二者可以降低CPU使用率 阻塞与非阻塞IO为何能降低CPU使用率 0. 授权须知1. 通俗解释2. 场景描述3. 阻塞IO之———等待队列使用详解4. 非阻塞IO之———poll select4.1 poll 访问4.2 selct 访…

华为L410终端及麒麟KOS上如何安装安卓应用

原文链接:华为L410终端及麒麟KOS上如何安装安卓应用 Hello,大家好啊!随着移动应用的普及,越来越多的用户希望在个人电脑上运行安卓应用,以便更好地整合工作和生活中的信息。特别是在华为L410终端和麒麟KOS操作系统上&a…

在线教程|零门槛部署 Llama 3,70B 版本只占 1.07G 存储空间,新用户免费体验 8B 版本

4 月 18 日,Meta 宣布开源 Llama 3,这个号称「迄今为止最好的开源大模型」一经发布,立刻引爆科技圈! 发布当天恰逢斯坦福大学教授、AI 顶尖专家吴恩达的生日,作为 AI 开源倡导者,他激动地发文表示&#xff…

亿图图示使用教程

亿图图示是一款强大的图形绘制工具,可以用于创建流程图、思维导图、组织结构图等多种类型的图表。下面是一些基本的使用教程: 下载和安装:首先,你需要在官方网站上下载亿图图示的安装包,然后按照提示进行安装。 新建项…

Tesla P4终于在DL580 Gen9上面跑起来了!

正文共:666 字 11 图,预估阅读时间:1 分钟 跌跌撞撞,从Tesla M4终于走到了Tesla P40,显存从4 GB到8 GB,最后再到24 GB,真是不容易。 回顾一下,Tesla M4是最早开始搞的,经…

CI/CD:基于kubernetes的Gitlab搭建

1. 项目目标 (1)熟悉使用k8s环境搭建Gitlab (2)熟练应用Gitlab基本配置 2. 项目准备 2.1. 规划节点 主机名 主机IP 节点规划 k8s-master 10.0.1.1 kube_master k8s-node1 10.0.1.2 kube_node k8s-node2 10.0.1.3 k…

【AI心理咨询测评】一年后,AI心理咨询的路还有多远?——5例AI模型心理咨询能力测评对比

前言 随着GPT横空出世,AI心理健康的市场开始逐渐被开拓。有人联想到线上以GPT作为基础,开发可线上心理咨询的AI,例如国内的聆心智能。然而,这一想法也遭到了无数人的质疑:“连聊天都尚不能很好完成,去做心…

第⑰讲:Ceph集群各组件的配置参数调整

文章目录 1.Ceph集群各组件的配置文件1.1.Ceph各组件配置方式1.2.ceph临时查看、修改配置参数的方法 2.调整Monitor组件的配置参数删除Pool资源池2.1.临时调整配置参数2.2.永久修改配置参数 1.Ceph集群各组件的配置文件 1.1.Ceph各组件配置方式 Ceph集群中各个组件的默认配置…

【Jenkins】持续集成与交付 (一):深入理解什么是持续集成?

🟣【Jenkins】持续集成与交付 (一):深入理解什么是持续集成? 1、软件开发生命周期与持续集成2、 持续集成的流程3、持续集成的好处4、Jenkins的应用实践5、结语💖The Begin💖点点关注,收藏不迷路💖 1、软件开发生命周期与持续集成 软件开发生命周期(SDLC)是指软…

C语言:项目实践(贪吃蛇)

前言: 相信大家都玩过贪吃蛇这款游戏吧,贪吃蛇是久负盛名的游戏,它也和俄罗斯方块,扫雷等游戏位列经典游戏的行列,那贪吃蛇到底是怎么实现的呢? 今天,我就用C语言带着大家一起来实现一下这款游戏…

微软如何打造数字零售力航母系列科普04 - 微软联合Adobe在微软365应用程序中工作时推出新的生成式AI功能

微软和Adobe正在合作,将情境营销见解和工作流程引入微软Copilot,以提供生成的人工智能功能,使营销人员和营销团队能够在自然的工作流程中实现更多目标。 这些新的集成功能将在生产力和协作工具(如Outlook、Teams和Word&#xff0…

【事业单位专场】联考、省市统考、单独招考

一、考编概述 1、事业单位类别 事业单位是指由国家出资或委托管理的公共机构,其主要职能是为社会提供公共服务。在中国,事业单位覆盖了科研、教育、文化和卫生等多个领域,并且有着不同的类型。以下是一些主要的分类: 教育事业单…

NLP(10)--TFIDF优劣势及其应用Demo

前言 仅记录学习过程,有问题欢迎讨论 TF*IDF: 优势: 可解释性好 可以清晰地看到关键词 即使预测结果出错,也很容易找到原因 计算速度快 分词本身占耗时最多,其余为简单统计计算 对标注数据依赖小 可以使用无标注语…

【状态机dp 状态压缩 分组】1994. 好子集的数目

本文涉及知识点 动态规划汇总 动态规划 状态机dp 状态压缩 分组 LeetCode1994. 好子集的数目 给你一个整数数组 nums 。如果 nums 的一个子集中,所有元素的乘积可以表示为一个或多个 互不相同的质数 的乘积,那么我们称它为 好子集 。 比方说&#xff…

离散数学之命题逻辑思维导图+大纲笔记(预习、期末复习,考研,)

大纲笔记: 命题逻辑的基本概念 命题与联结词 命题 命题是推理的基本单位 真命题,假命题 特征 陈述句 唯一的真值 是非真即假的陈述句 非命题 疑问句 祈使句 可真可假 悖论 模糊性 三个基本概念 复合命题 真值取决于原子命题的值和逻辑联结词 原子命题 逻…

基于SSM的考研助手系统(有报告)。Javaee项目。ssm项目。

演示视频: 基于SSM的考研助手系统(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…

【Java】图书管理系统 介绍与实现

欢迎浏览高耳机的博客 希望我们彼此都有更好的收获 感谢三连支持! 1.介绍 图书馆作为知识的殿堂和学术的中心,其管理系统不仅是图书馆管理的必备工具,更是为用户提供优质、高效服务的重要保障,促进了知识的传播和学术的发展。随着…

基于FPGA的数字信号处理(6)--如何确定Verilog表达式的符号

前言 尽管signed语法的使用能带来很多便利,但同时也给表达式的符号确定带来了更多的不确定性。比如一个有符号数和一个无符号数的加法/乘法结果是有符号数还是无符号数?一个有符号数和一个无符号数的比较结果是有符号数还是无符号数?等等。接…

力扣刷题Day2

题目链接: 24. 两两交换链表中的节点 - 力扣(LeetCode) 效果: 解题思路: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。 注意不可以只是单纯的改变节点内部的值,而…