Python酷库之旅-第三方库Pandas(045)

目录

一、用法精讲

156、pandas.Series.count方法

156-1、语法

156-2、参数

156-3、功能

156-4、返回值

156-5、说明

156-6、用法

156-6-1、数据准备

156-6-2、代码示例

156-6-3、结果输出

157、pandas.Series.cov方法

157-1、语法

157-2、参数

157-3、功能

157-4、返回值

157-5、说明

157-6、用法

157-6-1、数据准备

157-6-2、代码示例

157-6-3、结果输出

158、pandas.Series.cummax方法

158-1、语法

158-2、参数

158-3、功能

158-4、返回值

158-5、说明

158-6、用法

158-6-1、数据准备

158-6-2、代码示例

158-6-3、结果输出

159、pandas.Series.cummin方法

159-1、语法

159-2、参数

159-3、功能

159-4、返回值

159-5、说明

159-6、用法

159-6-1、数据准备

159-6-2、代码示例

159-6-3、结果输出

160、pandas.Series.cumprod方法

160-1、语法

160-2、参数

160-3、功能

160-4、返回值

160-5、说明

160-6、用法

160-6-1、数据准备

160-6-2、代码示例

160-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

156、pandas.Series.count方法
156-1、语法
# 156、pandas.Series.count方法
pandas.Series.count()
Return number of non-NA/null observations in the Series.Returns:
int
Number of non-null values in the Series.
156-2、参数

        无

156-3、功能

        用于计算Series中非NaN值的数量的方法,它会忽略NaN和None值,只统计有效的非缺失值。

156-4、返回值

        返回的是一个整数,表示Series中非NaN或None值的数量,如果Series是空的或所有值都是缺失值,返回值将是0。

156-5、说明

        无

156-6、用法
156-6-1、数据准备
156-6-2、代码示例
# 156、pandas.Series.count方法
import pandas as pd
import numpy as np
# 创建一个Series
s = pd.Series([1, 2, np.nan, 4, None])
# 计算非NaN值的数量
count = s.count()
print(count)
156-6-3、结果输出
# 156、pandas.Series.count方法
# 3
157、pandas.Series.cov方法
157-1、语法
# 157、pandas.Series.cov方法
pandas.Series.cov(other, min_periods=None, ddof=1)
Compute covariance with Series, excluding missing values.The two Series objects are not required to be the same length and will be aligned internally before the covariance is calculated.Parameters:
other
Series
Series with which to compute the covariance.min_periods
int, optional
Minimum number of observations needed to have a valid result.ddof
int, default 1
Delta degrees of freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.Returns:
float
Covariance between Series and other normalized by N-1 (unbiased estimator).
157-2、参数

157-2-1、other(必须)表示另一个Series对象,它与当前Series对象进行协方差计算,other必须与当前Series对象的长度相同。

157-2-2、min_periods(可选,默认值为None)指定了计算协方差所需的最小有效观测数量,即在计算协方差之前,两个Series中的有效数据点必须达到这个数量。如果有效数据点少于这个数量,返回的结果将是NaN;如果未设置(即None),则没有最小观测数量的限制,协方差会计算所有有效数据点。

157-2-3、ddof(可选,默认值为1)自由度调整参数,该参数用于控制协方差的计算方式:

157-2-3-1、 如果ddof=1,则计算样本协方差。这是默认设置,通常用于估计样本间的协方差

157-2-3-2、如果ddof=0,则计算总体协方差,即假设数据是整个总体的一部分。

157-3、功能

        用于计算两个Series对象之间的协方差。    

157-4、返回值

157-4-1、返回一个float类型的数值,表示两个Series之间的协方差。

157-4-2、如果无法计算协方差(例如Series的有效数据点数量不足),则返回NaN。

157-5、说明

        使用场景:

157-5-1、金融分析

  • 风险管理:在投资组合管理中,协方差用来衡量两个资产(如股票、债券)价格变动的相关性,这有助于评估资产组合的风险。
  • 资产配置:通过计算不同资产对组合收益的协方差,投资者可以优化资产配置以实现风险最小化或收益最大化。

157-5-2、数据分析与特征选择

  • 特征相关性分析:在构建机器学习模型时,了解特征之间的协方差可以帮助选择相关性较强的特征,改进模型性能。
  • 数据预处理:对于高维数据集,协方差矩阵有助于降维(例如,主成分分析PCA)以提取主要特征。

157-5-3、统计学研究

  • 回归分析:协方差是回归分析中的基础统计量之一,用于理解自变量和因变量之间的线性关系。
  • 变量关系探索:在探索数据集中的变量关系时,协方差可以作为初步分析工具,帮助识别变量间的潜在联系。

157-5-4、质量控制

  • 过程控制:在制造业或服务业中,协方差可以用来监控两个过程变量(如生产速率与产品质量)的关系,以优化生产过程和产品质量。

157-5-5、社会科学研究

  • 行为研究:在心理学或社会学研究中,协方差可以帮助分析不同变量(如心理测试分数与行为指标)之间的关系,揭示潜在的行为模式。
157-6、用法
157-6-1、数据准备
157-6-2、代码示例
# 157、pandas.Series.cov方法
import pandas as pd
s1 = pd.Series([1, 2, 3, 4, 5])
s2 = pd.Series([5, 4, 3, 2, 1])
# 计算协方差,使用默认的min_periods和ddof
covariance_default = s1.cov(s2)
print("Default covariance:", covariance_default)
# 设置min_periods为4
covariance_min_periods = s1.cov(s2, min_periods=4)
print("Covariance with min_periods=4:", covariance_min_periods)
# 设置ddof为0
covariance_ddof = s1.cov(s2, ddof=0)
print("Covariance with ddof=0:", covariance_ddof)
157-6-3、结果输出
# 157、pandas.Series.cov方法
# Default covariance: -2.5
# Covariance with min_periods=4: -2.5
# Covariance with ddof=0: -2.0
158、pandas.Series.cummax方法
158-1、语法
# 158、pandas.Series.cummax方法
pandas.Series.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative maximum over a DataFrame or Series axis.Returns a DataFrame or Series of the same size containing the cumulative maximum.Parameters:
axis
{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.skipna
bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.*args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.Returns:
scalar or Series
Return cumulative maximum of scalar or Series.
158-2、参数

158-2-1、axis(可选,默认值为None)在Series上,此参数没有实际作用,因为Series只有一个轴。

158-2-2、skipna(可选,默认值为True)如果为True,则在计算时会忽略NaN值;若为False,遇到NaN值时,结果也会为NaN。

158-2-3、*args(可选)传递其他位置参数。

158-2-4、**kwarg(可选)传递其他关键字参数。

158-3、功能

        用于计算Series对象的累积最大值,该方法沿着指定的轴(对Series来说,通常是轴0,即数据的顺序)计算累积最大值。

158-4、返回值

        返回一个新的Series对象,该Series的每个值表示从数据的开头到当前位置的最大值,这意味着返回的Series中的每个元素都是输入Series的累积最大值序列。具体来说,返回值的索引和原始Series一样,但其每个位置的值是从该位置开始向前的最大值。

158-5、说明

        应用场景:

158-5-1、时间序列分析: 用于计算时间序列数据的累积最大值,帮助识别数据的波动模式。

158-5-2、投资分析: 用于跟踪某一资产的累积最大值,帮助评估其表现。

158-5-3、数据预处理: 在特征工程中,累积最大值可以用作特征提取的一部分,特别是在处理时间序列数据时。

158-6、用法
158-6-1、数据准备
158-6-2、代码示例
# 158、pandas.Series.cummax方法
import pandas as pd
# 创建一个Series 对象
s = pd.Series([3, 1, 4, 1, 5, 9, 2, 6])
# 计算累积最大值
cummax_series = s.cummax()
print(cummax_series)
158-6-3、结果输出
# 158、pandas.Series.cummax方法
# 0    3
# 1    3
# 2    4
# 3    4
# 4    5
# 5    9
# 6    9
# 7    9
# dtype: int64
159、pandas.Series.cummin方法
159-1、语法
# 159、pandas.Series.cummin方法
pandas.Series.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over a DataFrame or Series axis.Returns a DataFrame or Series of the same size containing the cumulative minimum.Parameters:
axis
{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.skipna
bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.*args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.Returns:
scalar or Series
Return cumulative minimum of scalar or Series.
159-2、参数

159-2-1、axis(可选,默认值为None)在Series上,此参数没有实际作用,因为Series只有一个轴。

159-2-2、skipna(可选,默认值为True)如果为True,则在计算时会忽略NaN值;若为False,遇到NaN值时,结果也会为NaN。

159-2-3、*args(可选)传递其他位置参数。

159-2-4、**kwarg(可选)传递其他关键字参数。

159-3、功能

        用于计算数据序列的累积最小值,它返回一个与原数据序列长度相同的序列,其中每个位置的值表示该位置之前(包括该位置)的所有元素中的最小值。

159-4、返回值

        返回值是一个与原始Series对象长度相同的Series对象,其中每个值表示从序列的开始到当前位置的累计最小值,这个新的Series对象的索引与原始Series相同,而数据值则是对应位置的累计最小值。

159-5、说明

        应用场景:

159-5-1、股票或金融时间序列分析:例如,计算某股票价格时间序列的每个时间点的最低价格,这对于识别最低点、计算潜在的止损点或分析趋势反转非常有用。

159-5-2、监控设备或传感器数据:在连续监控设备或传感器数据时,可能需要了解每个时间点的历史最低值,以检测异常情况或确定故障的可能性。

159-5-3、质量控制和生产线监测:在生产过程中,可能需要监测某些参数(如温度、压力等)的累积最小值,以确保生产过程在预期范围内运行。

159-5-4、竞赛或游戏中的排名分析:在某些竞赛或游戏中,可能需要跟踪某个选手在比赛过程中的最低排名。

159-6、用法
159-6-1、数据准备
159-6-2、代码示例
# 159、pandas.Series.cummin方法
# 159-1、股票或金融时间序列分析
import pandas as pd
prices = pd.Series([10, 12, 8, 11, 9, 15, 7])
cummin_prices = prices.cummin()
print(cummin_prices, end='\n\n')# 159-2、监控设备或传感器数据
import pandas as pd
temperatures = pd.Series([22, 21, 19, 20, 18, 17, 16])
cummin_temperatures = temperatures.cummin()
print(cummin_temperatures, end='\n\n')# 159-3、质量控制和生产线监测
import pandas as pd
pressures = pd.Series([30, 28, 29, 27, 26, 25, 24])
cummin_pressures = pressures.cummin()
print(cummin_pressures, end='\n\n')# 159-4、竞赛或游戏中的排名分析
import pandas as pd
ranks = pd.Series([5, 3, 4, 2, 1, 4, 3])
cummin_ranks = ranks.cummin()
print(cummin_ranks)
159-6-3、结果输出
# 159、pandas.Series.cummin方法
# 159-1、股票或金融时间序列分析
# 0    10
# 1    10
# 2     8
# 3     8
# 4     8
# 5     8
# 6     7
# dtype: int64# 159-2、监控设备或传感器数据
# 0    22
# 1    21
# 2    19
# 3    19
# 4    18
# 5    17
# 6    16
# dtype: int64# 159-3、质量控制和生产线监测
# 0    30
# 1    28
# 2    28
# 3    27
# 4    26
# 5    25
# 6    24
# dtype: int64# 159-4、竞赛或游戏中的排名分析
# 0    5
# 1    3
# 2    3
# 3    2
# 4    1
# 5    1
# 6    1
# dtype: int64
160、pandas.Series.cumprod方法
160-1、语法
# 160、pandas.Series.cumprod方法
pandas.Series.cumprod(axis=None, skipna=True, *args, **kwargs)
Return cumulative product over a DataFrame or Series axis.Returns a DataFrame or Series of the same size containing the cumulative product.Parameters:
axis
{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0.skipna
bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.*args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.Returns:
scalar or Series
Return cumulative product of scalar or Series.
160-2、参数

160-2-1、axis(可选,默认值为None)在Series上,此参数没有实际作用,因为Series只有一个轴。

160-2-2、skipna(可选,默认值为True)如果为True,则在计算时会忽略NaN值;若为False,遇到NaN值时,结果也会为NaN。

160-2-3、*args(可选)传递其他位置参数。

160-2-4、**kwarg(可选)传递其他关键字参数。

160-3、功能

        用于计算数据序列的累积乘积。

160-4、返回值

        返回一个与原数据序列长度相同的序列,其中每个位置的值表示该位置之前(包括该位置)的所有元素的乘积。

160-5、说明

        应用场景:

160-5-1、金融时间序列分析:例如,计算某投资组合在每个时间点的累计收益率。

160-5-2、产品生产过程中的累积效率:在生产过程中,可以使用累积乘积来计算某个过程中多个步骤的总效率。

160-5-3、概率累积计算:在一些概率问题中,可能需要计算一系列独立事件的联合概率。

160-5-4、成长因子的累积计算:例如,计算一个公司在每年增长率下的累积增长因子。

160-6、用法
160-6-1、数据准备
160-6-2、代码示例
# 160、pandas.Series.cumprod方法
# 160-1、金融时间序列分析
import pandas as pd
returns = pd.Series([1.02, 1.03, 0.97, 1.05, 0.98])
cumprod_returns = returns.cumprod()
print(cumprod_returns, end='\n\n')# 160-2、产品生产过程中的累积效率
import pandas as pd
efficiencies = pd.Series([0.95, 0.98, 0.99, 0.97])
cumprod_efficiencies = efficiencies.cumprod()
print(cumprod_efficiencies, end='\n\n')# 160-3、概率累积计算
import pandas as pd
probabilities = pd.Series([0.9, 0.85, 0.8, 0.95])
cumprod_probabilities = probabilities.cumprod()
print(cumprod_probabilities, end='\n\n')# 160-4、成长因子的累积计算
import pandas as pd
growth_factors = pd.Series([1.1, 1.05, 1.2, 1.15])
cumprod_growth_factors = growth_factors.cumprod()
print(cumprod_growth_factors)
160-6-3、结果输出
# 160、pandas.Series.cumprod方法
# 160-1、金融时间序列分析
# 0    1.020000
# 1    1.050600
# 2    1.019082
# 3    1.070036
# 4    1.048635
# dtype: float64# 160-2、产品生产过程中的累积效率
# 0    0.950000
# 1    0.931000
# 2    0.921690
# 3    0.894039
# dtype: float64# 160-3、概率累积计算
# 0    0.9000
# 1    0.7650
# 2    0.6120
# 3    0.5814
# dtype: float64# 160-4、成长因子的累积计算
# 0    1.1000
# 1    1.1550
# 2    1.3860
# 3    1.5939
# dtype: float64

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/50086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式系统常见软件架构模式

常见的分布式软件架构 Peer-to-Peer (P2P) PatternAPI Gateway PatternPub-Sub (Publish-Subscribe)Request-Response PatternEvent Sourcing PatternETL (Extract, Transform, Load) PatternBatching PatternStreaming Processing PatternOrchestration Pattern总结 先上个图&…

.h264 .h265 压缩率的直观感受

1.资源文件 https://download.csdn.net/download/twicave/89579327 上面是.264 .265和原始的YUV420文件,各自的大小。 2.转换工具: 2.1 .h264 .h265互转 可以使用ffmpeg工具:Builds - CODEX FFMPEG gyan.dev 命令行参数: …

liteos定时器回调时间过长造成死机问题解决思路

项目需求 原代码是稳定的,现我实现EMQ平台断开连接的时候,把HSL的模拟点位数据采集到网关,然后存入Flash,当EMQ平台连接的时候,把Flash里面的点位数据放在消息队列里面,不影响实时采集。 核心1&#xff1a…

godot新建项目及设置外部编辑器为vscode

一、新建项目 初次打开界面如下所示,点击取消按钮先关闭掉默认弹出的框 点击①新建弹出中间的弹窗②中填入项目的名称 ③中设置项目的存储路径,点击箭头所指浏览按钮,会弹出如下所示窗口 根据图中所示可以选择或新建自己的游戏存储路径&…

鸿蒙(HarmonyOS)自定义Dialog实现时间选择控件

一、操作环境 操作系统: Windows 11 专业版、IDE:DevEco Studio 3.1.1 Release、SDK:HarmonyOS 3.1.0(API 9) 二、效果图 三、代码 SelectedDateDialog.ets文件/*** 时间选择*/ CustomDialog export struct SelectedDateDialog {State selectedDate:…

Linux系统上安装Redis

百度网盘: 通过网盘分享的文件:redis_linux 链接: https://pan.baidu.com/s/1ZcECygWA15pQWCuiVdjCtg?pwd8888 提取码: 8888 1.把安装包拖拽到/ruanjian/redis/文件夹中(自己选择) 2.进入压缩包所在文件夹,解压压缩…

ROM修改进阶教程------修改rom 开机自动安装指定apk 自启脚本完整步骤解析

rom修改的初期认识 在解包修改系统分区过程中。很多客户需求刷完rom后自动安装指定apk。这种与内置apk有区别。而且一些极个别apk无法内置。今天对这种修改rom刷入机型后第一次启动后自动安装指定apk的需求做个步骤解析。 在前期博文中我有做过说明。官方系统固件解…

按图搜索新体验:阿里巴巴拍立淘API返回值详解

阿里巴巴拍立淘API是一项基于图片搜索的商品搜索服务,它允许用户通过上传商品图片,系统自动识别图片中的商品信息,并返回与之相关的搜索结果。以下是对阿里巴巴拍立淘API返回值的详细解析: 一、主要返回值内容 商品信息 商品列表…

Java面试题(每日更新)

每日五道!学会就去面试! 本文的宗旨是为读者朋友们整理一份详实而又权威的面试清单,下面一起进入主题吧。 目录 1.概述 2.Java 基础 2.1 JDK 和 JRE 有什么区别? 2.2 和 equals 的区别是什么? 2.3 两个对象的…

ECharts实现按月统计和MTBF统计

一、数据准备 下表是小明最近一年的旅游记录 create_datecity_namecost_money2023-10-10 10:10:10北京14992023-11-11 11:11:11上海29992023-12-12 12:12:12上海19992024-01-24 12:12:12北京1232024-01-24 12:12:12上海2232024-02-24 12:12:12广州5642024-02-24 12:12:12北京…

leetcode-148. 排序链表

题目描述 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2: 输入:head [-1,5,3,4,0] 输出:[-1,0,3,4,5]示例 3&#x…

react18+

主要是围绕函数式组件讲,18主要用就是函数式组件,学习前先熟悉下原生js的基本使用,主要是事件 1、UI操作 1.1、书写jsx标签语言 基本写法和原生如同一则,只是放在一个方法里面返回而已,我们称这样的写法为函数式组件…

OrangePi Zero2 全志H616 开发初探

目录: 一、刷机和系统启动1、TF 卡格式化:2、镜像烧录:3、登录系统: 二、基于官方外设开发1、wiringPi 外设 SDK 安装:2、C 文件编译:3、基于官方外设的应用开发:① GPIO 输入输出:②…

【个人亲试最新】WSL2中的Ubuntu 22.04安装Docker

文章目录 Wsl2中的Ubuntu22.04安装Docker其他问题wsl中执行Ubuntu 报错:System has not been booted with systemd as init system (PID 1). Can‘t operate. 参考博客 😊点此到文末惊喜↩︎ Wsl2中的Ubuntu22.04安装Docker 确定为wsl2ubuntu22.04&#…

vue接入google map自定义marker教程

需求背景 由于客户需求,原来系统接入的高德地图,他们不接受,需要换成google地图。然后就各种百度,各种Google,却不能实现。----无语,就连google地图官方的api也是一坨S-H-I。所以才出现这篇文章。 google地…

【Python实战因果推断】56_因果推理概论6

目录 Causal Quantities: An Example Bias Causal Quantities: An Example 让我们看看在我们的商业问题中,你如何定义这些量。首先,你要注意到,你永远无法知道价格削减(即促销活动)对某个特定商家的确切影响&#xf…

AMEsim液压阀伯德图绘制方法

之前也在液压圈论坛里面发过类似的贴子,具体可以看这个网址🚪👉:如何得出说明书里面的伯德图曲线?,回复的人还是比较少,这个方法重要信息是参考百度文库这篇文章🚪👉&…

【系统架构设计师】计算机组成与体系结构 ⑯ ( 奇偶校验码 | CRC 循环冗余码 | 海明码 | 模 2 除法 )

文章目录 一、校验码1、校验码由来2、奇偶校验码3、CRC 循环冗余码 ( 重点考点 )4、海明码校验 ( 软考不经常考到 ) 二、CRC 循环冗余码 ( 重点考点 )1、模 2 除法概念2、模 2 除法步骤3、模 2 除法示例4、CRC 循环冗余码示例 15、CRC 循环冗余码示例 2 参考之前的博客 : 【计…

Webshell管理工具:AntSword(中国蚁剑)

中国蚁剑是一款开源的跨平台网站管理工具,它主要面向于合法授权的渗透测试安全人员以及进行常规操作的网站管理员。 通俗的讲:中国蚁剑是 一 款比菜刀还牛的shell控制端软件。 一、中国蚁剑下载 1. 下载 AntSword-Loader https://github.com/AntSwordP…

面试前端实习常问的关于【ES6新特性】的问题

ES6新特性 日常前端代码开发中,有哪些值得用 ES6 去改进的编程优化或者规范? 常用箭头函数来取代有this指向的函数常用 let 取代 var 命令常用数组/对象的结构赋值来命名变量(结构更清晰,语义更明确,可读性更好)在长字…