博主主页:Yan. yan.
C语言专栏
数据结构专栏
力扣牛客经典题目专栏
C++专栏
文章目录
- 一、模板初阶
- 函数模板
- 概念
- 函数模板格式
- 函数模板的原理
- 函数模板的实例化
- 模板参数的匹配原则
- 类模板
- 类模板的定义格式
- 类模板的实例化
- 二、STL
一、模板初阶
在编程的时候,我们往往会遇见频繁调用一个函数的情况,可以用函数重载来实现,但是函数重载也会有不好的情况:
- 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
- 代码的可维护性比较低,一个出错可能所有的重载均出错。
那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
函数模板
概念
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。
函数模板格式
template<typename T1, typename T2,…,typename Tn>
返回值类型 函数名(参数列表){}
template<typename T>void Swap( T& left, T& right){T temp = left;left = right;right = temp;}
注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)
函数模板的原理
函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。
函数模板的实例化
用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化。
- 隐式实例化:让编译器根据实参推演模板参数的实际类型
template<typename T>T Add(T& a, T& b)
{return a + b;
}int main()
{int a1 = 1, b1 = 2;double a2 = 1.1, b2 = 2.2;cout << Add(a1, b1) << endl;cout << Add(a2, b2) << endl;return 0;
}
- 显式实例化:在函数名后的<>中指定模板参数的实际类型
template<typename T>T Add(T& a, T& b)
{return a + b;
}int main(void)
{int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
}
如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。
模板参数的匹配原则
- 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。
- 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。
- 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换。
类模板
类模板的定义格式
template<class T1, class T2, ..., class Tn>
class 类模板名
{// 类内成员定义
};
类模板的实例化
类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类。
// Vector类名,Vector<int>才是类型Vector<int> s1;Vector<double> s2;
二、STL
STL(standard template libaray-标准模板库):是C++标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架。
STL的版本:
- 原始版本
Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版本,本着开源精神,他们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要向原始版本一样做开源使用。 HP 版本–所有STL实现版本的始祖。 - P. J. 版本
由P. J. Plauger开发,继承自HP版本,被Windows Visual C++采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。 - RW版本
由Rouge Wage公司开发,继承自HP版本,被C+ + Builder 采用,不能公开或修改,可读性一般。 - SGI版本
由Silicon Graphics Computer Systems,Inc公司开发,继承自HP版 本。被GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程 风格上看,阅读性非常高。我们后面学习STL要阅读部分源代码,主要参考的就是这个版本。
SLT六大组件:
- 容器(Containers):
容器是用于存储和管理数据的数据结构,包括向量(vector)、链表(list)、双端队列(deque)、队列(queue)、栈(stack)、集合(set)、映射(map)等。每种容器都有不同的特点和适用场景,可以根据具体的需求选择合适的容器。 - 算法(Algorithms):
算法是用于对容器中的元素进行操作和处理的函数,包括排序、查找、遍历、拷贝、删除等一系列操作。STL提供了大量的算法,能够满足各种不同的需求,提高代码的复用性和可读性。 - 迭代器(Iterators):
迭代器是一种用于遍历容器中元素的对象,它提供了统一的访问接口,使得算法能够与容器解耦合。STL提供了多种类型的迭代器,包括输入迭代器、输出迭代器、正向迭代器、双向迭代器和随机访问迭代器,每种迭代器都有不同的功能和特点。 - 仿函数(Functors):
仿函数是一种可调用对象,它可以像函数一样被调用,并且可以作为算法的参数使用。仿函数可以是普通函数指针、函数对象(重载了函数调用运算符 operator() 的类对象)、Lambda 表达式等。STL提供了一些内置的仿函数,同时也支持用户自定义的仿函数。 - 适配器(Adapters):
适配器是一种用于在不同容器之间进行转换和包装的机制,它可以将一个容器转换为另一个容器,或者在一个容器的基础上提供新的功能。STL提供了一些常用的适配器,如栈适配器(stack)、队列适配器(queue)、优先队列适配器(priority_queue)等。 - 配置器(Allocators):
配置器是一种用于内存管理的机制,它控制着容器在内存中的分配和释放。STL中的容器和算法都使用了配置器来进行内存管理,但配置器的具体实现通常是由编译器提供的默认配置器。STL也允许用户自定义配置器,以满足特定的需求。