opencv—常用函数学习_“干货“_11

目录

二九、图像累加

将输入图像累加到累加图像中 (accumulate)

将输入图像加权累加到累加图像中 (accumulateWeighted)

将输入图像的平方累加到累加图像中 (accumulateSquare)

将两个输入图像的乘积累加到累加图像中 (accumulateProduct)

解释

三十、随机数与添加噪声

使用 randu 生成均匀分布的随机数并添加噪声

使用 randn 生成正态分布的随机数并添加噪声

解释

实际应用

三一、PCA

计算主成分 (PCACompute)

将数据投影到主成分空间 (project)

将数据从主成分空间反投影回原空间 (backProject)

解释

实际应用

图像压缩示例

http://t.csdnimg.cn/i8pqt —— opencv—常用函数学习_“干货“_总(VIP)

散的正在一部分一部分发,不需要VIP。

资料整理不易,有用话给个赞和收藏吧。


二九、图像累加

        在OpenCV中,图像累加是一个重要的操作,通常用于视频处理、背景建模和图像融合等任务。OpenCV提供了多种累加操作的函数,包括accumulateaccumulateWeightedaccumulateSquareaccumulateProduct。下面介绍这些函数及其使用示例。

图像累加函数
accumulateaccumulateWeightedaccumulateSquareaccumulateProduct
将输入图像累加到累加图像中将输入图像加权累加到累加图像中将输入图像的平方累加到累加图像中将两个输入图像的乘积累加到累加图像中

将输入图像累加到累加图像中 (accumulate)
import cv2
import numpy as np# 读取图像
image1 = cv2.imread('path_to_image1.jpg', cv2.IMREAD_GRAYSCALE)
image2 = cv2.imread('path_to_image2.jpg', cv2.IMREAD_GRAYSCALE)# 初始化累加图像
accum_image = np.zeros_like(image1, dtype=np.float32)# 执行累加操作
cv2.accumulate(image1, accum_image)
cv2.accumulate(image2, accum_image)# 显示累加结果
cv2.imshow('Accumulated Image', cv2.convertScaleAbs(accum_image))
cv2.waitKey(0)
cv2.destroyAllWindows()
将输入图像加权累加到累加图像中 (accumulateWeighted)
# 初始化累加图像
accum_image_weighted = np.zeros_like(image1, dtype=np.float32)# 加权累加操作
alpha = 0.5
cv2.accumulateWeighted(image1, accum_image_weighted, alpha)
cv2.accumulateWeighted(image2, accum_image_weighted, alpha)# 显示加权累加结果
cv2.imshow('Accumulated Weighted Image', cv2.convertScaleAbs(accum_image_weighted))
cv2.waitKey(0)
cv2.destroyAllWindows()
将输入图像的平方累加到累加图像中 (accumulateSquare)
# 初始化累加图像
accum_image_square = np.zeros_like(image1, dtype=np.float32)# 累加平方操作
cv2.accumulateSquare(image1, accum_image_square)
cv2.accumulateSquare(image2, accum_image_square)# 显示累加平方结果
cv2.imshow('Accumulated Square Image', cv2.convertScaleAbs(accum_image_square))
cv2.waitKey(0)
cv2.destroyAllWindows()
将两个输入图像的乘积累加到累加图像中 (accumulateProduct)
# 初始化累加图像
accum_image_product = np.zeros_like(image1, dtype=np.float32)# 累加乘积操作
cv2.accumulateProduct(image1, image2, accum_image_product)# 显示累加乘积结果
cv2.imshow('Accumulated Product Image', cv2.convertScaleAbs(accum_image_product))
cv2.waitKey(0)
cv2.destroyAllWindows()

解释

  • accumulate函数:将输入图像累加到累加图像中,适用于累积多帧图像。
  • accumulateWeighted函数:将输入图像加权累加到累加图像中,可以用于背景建模和图像融合,参数alpha用于控制权重。
  • accumulateSquare函数:将输入图像的平方累加到累加图像中,适用于平方累加操作。
  • accumulateProduct函数:将两个输入图像的乘积累加到累加图像中,适用于乘积累加操作。

        这些示例展示了如何使用OpenCV中的各种累加函数来处理图像。根据具体的应用需求,可以灵活运用这些函数来实现复杂的图像处理任务。

三十、随机数与添加噪声

        在OpenCV中,randurandn 是两个用于生成随机数的函数,常用于图像处理中的噪声添加等操作。下面介绍这些函数及其使用示例。

随机数生成与添加噪声函数
randurandn
生成均匀分布的随机数生成正态(高斯)分布的随机数
使用 randu 生成均匀分布的随机数并添加噪声
import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)# 生成与图像大小相同的均匀分布噪声
noise = np.zeros_like(image, dtype=np.float32)
cv2.randu(noise, 0, 255)# 将噪声添加到图像中
noisy_image = cv2.add(image.astype(np.float32), noise)# 显示原图像和添加噪声后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Uniform Noise Image', noisy_image.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
使用 randn 生成正态分布的随机数并添加噪声
# 生成与图像大小相同的正态分布噪声
noise = np.zeros_like(image, dtype=np.float32)
cv2.randn(noise, 0, 25)  # 均值为0,标准差为25# 将噪声添加到图像中
noisy_image = cv2.add(image.astype(np.float32), noise)# 显示原图像和添加噪声后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Gaussian Noise Image', noisy_image.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()

解释

  • randu函数:生成均匀分布的随机数。可以指定随机数的上下限。例如,在上述代码中,噪声值在0到255之间均匀分布。
  • randn函数:生成正态(高斯)分布的随机数。可以指定随机数的均值和标准差。例如,在上述代码中,噪声值服从均值为0,标准差为25的正态分布。

实际应用

        在图像处理中,添加噪声常用于以下场景:

  1. 算法测试:在处理算法中测试其抗噪能力。
  2. 数据增强:在训练机器学习模型时,使用带噪声的数据增强模型的鲁棒性。
  3. 模拟真实情况:在某些情况下,需要模拟现实中的噪声以测试图像处理算法的性能。

        通过这些示例,可以看到如何使用OpenCV中的randurandn函数来生成随机数并将其添加到图像中作为噪声。根据具体的应用需求,可以灵活运用这些函数来实现图像处理任务。

三一、PCA

        在OpenCV中,主成分分析(PCA)是一种常用的降维技术,广泛应用于图像处理和机器学习领域。OpenCV提供了几个用于PCA操作的函数:PCAComputeprojectbackProject。下面介绍这些函数及其使用示例。

PCA函数
PCAComputeprojectbackProject
计算主成分将数据投影到主成分空间将数据从主成分空间反投影回原空间

计算主成分 (PCACompute)
import cv2
import numpy as np# 创建示例数据
data = np.array([[2.5, 2.4],[0.5, 0.7],[2.2, 2.9],[1.9, 2.2],[3.1, 3.0],[2.3, 2.7],[2, 1.6],[1, 1.1],[1.5, 1.6],[1.1, 0.9]], dtype=np.float32)# 计算PCA
mean, eigenvectors = cv2.PCACompute(data, mean=None)print("Mean:\n", mean)
print("Eigenvectors:\n", eigenvectors)
将数据投影到主成分空间 (project)
# 将数据投影到主成分空间
projected_data = cv2.PCAProject(data, mean, eigenvectors)print("Projected Data:\n", projected_data)
将数据从主成分空间反投影回原空间 (backProject)
# 将数据从主成分空间反投影回原空间
back_projected_data = cv2.PCABackProject(projected_data, mean, eigenvectors)print("Back Projected Data:\n", back_projected_data)

解释

  • PCACompute函数:计算数据的主成分。返回均值和特征向量(主成分)。
  • project函数:将数据投影到主成分空间。使用计算得到的均值和特征向量,将原数据转换到主成分空间。
  • backProject函数:将数据从主成分空间反投影回原空间。使用计算得到的均值和特征向量,将主成分空间的数据转换回原始数据空间。

实际应用

PCA在图像处理中有许多应用,例如:

  1. 图像压缩:通过保留主要成分,减少图像的维度,从而实现压缩。
  2. 特征提取:在图像分类和识别任务中,使用PCA提取主要特征,减少计算复杂度。
  3. 数据可视化:将高维数据降维到2D或3D空间,方便可视化。
图像压缩示例
# 读取图像并转换为灰度图
image = cv2.imread('path_to_image.jpg', cv2.IMREAD_GRAYSCALE)
image = np.float32(image) / 255.0
h, w = image.shape# 将图像展开为2D数据
data = image.reshape((-1, w))# 计算PCA,保留主要成分
mean, eigenvectors = cv2.PCACompute(data, mean=None, maxComponents=10)# 投影到主成分空间
projected_data = cv2.PCAProject(data, mean, eigenvectors)# 反投影回原空间
back_projected_data = cv2.PCABackProject(projected_data, mean, eigenvectors)# 将数据重塑为图像
compressed_image = back_projected_data.reshape((h, w))# 显示原图像和压缩后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Compressed Image', compressed_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        通过这些示例,可以看到如何使用OpenCV中的PCA函数来处理数据和图像。根据具体的应用需求,可以灵活运用这些函数来实现数据降维和特征提取等任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/47342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Access、Trunk和Hybrid】

概述 Access类型的端口只能属于1个VLAN,一般用于连接计算机的端口;Trunk类型的端口可以允许多个VLAN通过,可以接收和发送多个VLAN的报文,一般用于交换机之间连接的端口;Hybrid类型的端口可以允许多个VLAN通过&#xf…

自己编写一个谷歌浏览器插件, 模拟某音直播间自动发消息

闲来没事, 做个插件玩一玩,于是一顿学习。 按照浏览器插件规范,一顿代码编写, 搞了一个简单的插件。仅做学习。 可以实现在直播间自动发消息。 定时轮发。 实现原理: 利用谷歌popub.js 发送消息。 在content-script.…

leetcode-49. 字母异位词分组

题目描述 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "n…

g2plot如何实现面积图和折线图的动态切换?

一开始的时候显示的是面积图: 当我点击折线图的时候,要变成折线图: 当我再点击面积图的时候,还要变回面积图: 要实现这个功能,得知道g2plot几个重要的API。 参考文档如下:https://g2plot…

【python】网络通信socket

一、什么是socket socket网络通信是一种基于TCP/IP协议的通信方式,通过套接字(Socket)实现不同主机间的通信。它基于客户端-服务器架构,客户端和服务器通过Socket进行连接、通信和数据交换。在网络中,进程之间如何通信…

防火墙之双机热备篇

为什么要在防火墙上配置双机热备技术呢? 相信大家都知道,为了提高可靠性,避免单点故障 肯定有聪明的小伙伴会想到那为什么不直接多配置两台防火墙,然后再将他们进行线路冗余,不就完成备份了吗? 答案是不…

JDK、JRE、JVM的区别java的基本数据类型

说一说JDK、JRE、JVM的区别在哪? JDK: Java Delopment kit是java工具包,包含了编译器javac,调试器(jdb)以及其他用于开发和调试java程序的工具。JDK是开发人员在开发java应用程序时候所需要的的基本工具。…

海外社媒矩阵为何会被关联?如何IP隔离?

在当今的数字时代,社交媒体已经成为人们日常生活中不可或缺的一部分。通过社交媒体,人们可以与朋友互动,分享生活,甚至进行业务推广和营销。然而,社交媒体账号关联问题逐渐受到广泛关注。社交媒体账号为何会关联&#…

问题清除指南|成功解决pipmatplotlib因为ConnectTimeoutError更新失败问题

前言:跑baseline需要升级matplotlib和pip,在此记录一个错误和一个「别致」的解决方案。 北京时间 14:00 左右,在终端环境中运行命令python -m pip install --upgrade pip,报错: 多次尝试,未果。 隔天上午 0…

Elasticsearch 企业级实战 01:Painless 脚本如何调试?

在企业级应用中,Elasticsearch 常常被用来处理复杂的数据查询和操作。 Painless 是 Elasticsearch 的内置脚本语言,虽然强大,但调试起来并不容易。 本文将详细介绍如何在实战中有效调试 Painless 脚本,以提高开发和运维效率。 本文…

2.javaWeb_请求和响应的处理(Request,Response)

2.请求和响应的处理 文章目录 2.请求和响应的处理一、动态资源和静态资源javax.servlet(包) 二、Servlet体系1.简介2.HttpServlet3.Servlet生命周期 三、Request对象1.ServletRequest1)ServletRequest主要功能有:2)ServletRequest类的常用方法: 2.HttpServletReques…

通过SchedulingConfigurer 接口完成动态定时任务

通过SchedulingConfigurer 接口完成动态定时任务 一.背景 在Spring中,除了使用Scheduled注解外,还可以通过实现SchedulingConfigurer接口来创建定时任务。它们之间的主要区别在于灵活性和动态性。Scheduled注解适用于固定周期的任务,一旦任…

生成式 AI 的未来,对话系统 (Chat)与自主代理 (Agent)相辅相成

目录 1. 概念解释生成式 AI对话系统 (Chat)自主代理 (Agent) 2. 代码示例对话系统示例 (使用 Python 和 NLTK 库)自主代理示例 (使用 Python 模拟简单的自主学习) 3. 逻辑性分析4. 通俗易懂的解释5. 与其他相似概念的对比6. 常见问题和解答7. 技术挑战与解决方案对话系统的技术…

内容安全(深度行为检测技术、IPS、AV、入侵检测方法)

1、深度行为检测技术 深度行为检测技术:是一种基于深度学习和机器学习的技术,它通过分析用户在网络中的行为模式,识别异常或潜在威胁行为,从而保护网络安全和内容安全 分类: 深度包检测技术(Deep Packet…

Kafka Producer发送消息流程之消息异步发送和同步发送

文章目录 1. 异步发送2. 同步发送 1. 异步发送 Kafka默认就是异步发送,在Main线程中的多条消息,没有严格的先后顺序,Sender发送后就继续下一条,异步接受结果。 public class KafkaProducerCallbackTest {public static void mai…

Unity Apple Vision Pro 开发(四):体积相机 Volume Camera

文章目录 📕教程说明📕教程内容概括📕体积相机作用📕创建体积相机📕添加体积相机配置文件📕体积相机配置文件参数📕体积相机的边界盒大小📕体积相机边界盒大小和应用边界盒大小的区别…

【GraphRAG】微软 graphrag 效果实测

GraphRAG 本文将基于以下来源,对Microsoft GraphRAG分析优缺点、以及示例实测分析。 1. Source 代码仓库: Welcome to GraphRAGhttps://microsoft.github.io/graphrag/ 微软文章1(2024.2.13):GraphRAG: Unlocking…

Hadoop3:MR程序的数据倾斜问题处理

一、数据倾斜 什么是数据倾斜? 学过Redis集群的都知道数据倾斜这个问题。 就是大量数据,分配不均匀的现象。 二、MR数据倾斜 1、怎么判断出现数据倾斜? 数据频率倾斜——某一个区域的数据量要远远大于其他区域。 数据大小倾斜——部分记…

Android中OkHttp3中超时时间概述

目录 前言connectTimeoutreadTimeoutwriteTimeoutcallTimeoutpingInterval拓展 前言 可以看到,使用还是很简单的。主要相关的有这五个参数,其中我们常用到是就是connectTimeout、readTimeout和writeTimeout。 再看上图,可以看到默认下connec…

js | Core

http://dmitrysoshnikov.com/ecmascript/javascript-the-core/ Object 是什么? 属性[[prototype]]对象。 例如,下面的,son是对象,foo不是对象。打印出来的son,能看到有一个prototype 对象。 prototype vs _proto_ v…