LLMs 入门实战系列

【LLMs 入门实战系列】

第一层 LLMs to Natural Language Processing (NLP)

第一重 ChatGLM-6B
  1. 【ChatGLM-6B入门-一】清华大学开源中文版ChatGLM-6B模型学习与实战
    1. 介绍:ChatGLM-6B 环境配置 和 部署
  2. 【ChatGLM-6B入门-二】清华大学开源中文版ChatGLM-6B模型微调实战
    1. ChatGLM-6B P-Tuning V2 微调:Fine-tuning the prefix encoder of the model.
  3. 【ChatGLM-6B入门-三】ChatGLM 特定任务微调实战
  4. 【ChatGLM-6B入门-四】ChatGLM + LoRA 进行finetune
    1. 介绍:ChatGLM-6B LoRA 微调:Fine-tuning the low-rank adapters of the model.
  5. ChatGLM-6B 小编填坑记
    1. 介绍:ChatGLM-6B 在 部署和微调 过程中 会遇到很多坑,小编掉坑了很多次,为防止 后人和小编一样继续掉坑,小编索性把遇到的坑都填了。
  6. 【LLMs学习】关于大模型实践的一些总结
  7. 【LLMs 入门实战 —— 十一 】基于 🤗PEFT 的高效 🤖ChatGLM-6B 微调
    1. 微调方式:
      1. ChatGLM-6B Freeze 微调:Fine-tuning the MLPs in the last n blocks of the model.
      2. ChatGLM-6B P-Tuning V2 微调:Fine-tuning the prefix encoder of the model.
      3. ChatGLM-6B LoRA 微调:Fine-tuning the low-rank adapters of the model.
第二重 Stanford Alpaca 7B
  • 【LLMs 入门实战 —— 五 】Stanford Alpaca 7B 模型学习与实战
    • 介绍:本教程提供了对LLaMA模型进行微调的廉价亲民 LLMs 学习和微调 方式,主要介绍对于 Stanford Alpaca 7B 模型在特定任务上 的 微调实验,所用的数据为OpenAI提供的GPT模型API生成质量较高的指令数据(仅52k)。
第三重 Chinese-LLaMA-Alpaca
  • 【LLMs 入门实战 —— 六 】Chinese-LLaMA-Alpaca 模型学习与实战
    • 介绍:本教程主要介绍了 Chinese-ChatLLaMA,提供中文对话模型 ChatLLama 、中文基础模型 LLaMA-zh 及其训练数据。 模型基于 TencentPretrain 多模态预训练框架构建
第四重 小羊驼 Vicuna
  • 【LLMs 入门实战 —— 七 】小羊驼 Vicuna模型学习与实战
    • 介绍:UC伯克利学者联手CMU、斯坦福等,再次推出一个全新模型70亿/130亿参数的Vicuna,俗称「小羊驼」(骆马)。小羊驼号称能达到GPT-4的90%性能
第五重 GPT4ALL
  • 【LLMs 入门实战 —— 八 】GPT4ALL 模型学习与实战
    • 介绍:一个 可以在自己笔记本上面跑起来的 Nomic AI 的助手式聊天机器人,成为贫民家孩子的 福音!
第六重 MOSS
  • 【LLMs 入门实战 —— 十三 】MOSS 模型学习与实战
    • 介绍:MOSS是一个支持中英双语和多种插件的开源对话语言模型,moss-moon系列模型具有160亿参数,在FP16精度下可在单张A100/A800或两张3090显卡运行,在INT4/8精度下可在单张3090显卡运行。MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。
    • 局限性:由于模型参数量较小和自回归生成范式,MOSS仍然可能生成包含事实性错误的误导性回复或包含偏见/歧视的有害内容,请谨慎鉴别和使用MOSS生成的内容,请勿将MOSS生成的有害内容传播至互联网。若产生不良后果,由传播者自负。
第七重 BLOOMz
  • 【LLMs 入门实战 —— 十四 】 BLOOMz 模型学习与实战
    • 介绍:大型语言模型(LLMs)已被证明能够根据一些演示或自然语言指令执行新的任务。虽然这些能力已经导致了广泛的采用,但大多数LLM是由资源丰富的组织开发的,而且经常不对公众开放。作为使这一强大技术民主化的一步,我们提出了BLOOM,一个176B参数的开放性语言模型,它的设计和建立要感谢数百名研究人员的合作。BLOOM是一个仅有解码器的Transformer语言模型,它是在ROOTS语料库上训练出来的,该数据集包括46种自然语言和13种编程语言(共59种)的数百个来源。我们发现,BLOOM在各种基准上取得了有竞争力的性能,在经历了多任务提示的微调后,其结果更加强大。
    • 模型地址:huggingface.co/bigscience/…
第八重 BELLE
  • 【LLMs 入门实战 —— 十五 】 BELLE 模型学习与实战
    • 介绍:相比如何做好大语言模型的预训练,BELLE更关注如何在开源预训练大语言模型的基础上,帮助每一个人都能够得到一个属于自己的、效果尽可能好的具有指令表现能力的语言模型,降低大语言模型、特别是中文大语言模型的研究和应用门槛。为此,BELLE项目会持续开放指令训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。BELLE针对中文做了优化,模型调优仅使用由ChatGPT生产的数据(不包含任何其他数据)。
    • github 地址: github.com/LianjiaTech…
第九重 ChatRWKV
  • 【LLMs 入门实战 —— 十八 】 ChatRWKV 模型学习与实战
    • 目前 RWKV 有大量模型,对应各种场景,各种语言,请选择合适的模型:
      • Raven 模型:适合直接聊天,适合 +i 指令。有很多种语言的版本,看清楚用哪个。适合聊天、完成任务、写代码。可以作为任务去写文稿、大纲、故事、诗歌等等,但文笔不如 testNovel 系列模型。
      • Novel-ChnEng 模型:中英文小说模型,可以用 +gen 生成世界设定(如果会写 prompt,可以控制下文剧情和人物),可以写科幻奇幻。不适合聊天,不适合 +i 指令。
      • Novel-Chn 模型:纯中文网文模型,只能用 +gen 续写网文(不能生成世界设定等等),但是写网文写得更好(也更小白文,适合写男频女频)。不适合聊天,不适合 +i 指令。
      • Novel-ChnEng-ChnPro 模型:将 Novel-ChnEng 在高质量作品微调(名著,科幻,奇幻,古典,翻译,等等)。
    • github: github.com/BlinkDL/Cha…
    • 模型文件:huggingface.co/BlinkDL
第十重 ChatGPT
  • 《ChatGPT Prompt Engineering for Developers》 学习 之 如何 编写 Prompt?
    • 吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》
    • 动机:吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》课程
    • 介绍:如何编写 Prompt:
      • 第一个方面:编写清晰、具体的指令
      • 第二个方面:给模型些时间思考
  • 《ChatGPT Prompt Engineering for Developers》 学习 之 如何 优化 Prompt?
    • 吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》
    • 动机:吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》课程
    • 介绍:优化编写好 Prompt
  • 《ChatGPT Prompt Engineering for Developers》 学习 之 如何使用 Prompt 处理 NLP特定任务?
    • 吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》
    • 动机:吴恩达老师与OpenAI合作推出《ChatGPT Prompt Engineering for Developers》课程
    • 介绍:如何构建ChatGPT Prompt以处理文本摘要、推断和转换(翻译、纠错、风格转换、格式转换等)这些常见的NLP任务
第十一重 OpenBuddy
  • 【LLMs 入门实战 —— 二十八 】 OpenBuddy 模型学习与实战
    • 论文名称:OpenBuddy - Open Multilingual Chatbot based on Falcon
    • github 地址:github.com/OpenBuddy/O…
    • 动机:虽然目前 很多人 LLMs 层出不穷,但是他们并不能 在 多语言支持无缝衔接(eg: LLaMA 模型由于是用 英语训练,所以在 中文等其他语种上效果并不好)
    • 介绍:基于 Tii 的 Falcon 模型和 Facebook 的 LLaMA 模型构建,OpenBuddy 经过微调,包括扩展词汇表、增加常见字符和增强 token 嵌入。通过利用这些改进和多轮对话数据集,OpenBuddy 提供了一个强大的模型,能够回答各种语言的问题并执行翻译任务。
第十二重 Baize
  • 【LLMs 入门实战 —— 三十 】Baize 学习与实战
    • 论文名称:Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data
    • 论文地址:arxiv.org/abs/2304.01…
    • Github 代码:github.com/project-bai…
    • 模型:
      • baize-v2-7b 模型:huggingface.co/project-bai…
      • baize-v2-13b 模型:huggingface.co/project-bai…
    • baize 体验网站:huggingface.co/spaces/proj…
    • 动机:高质量的标注数据问题
    • 介绍:Baize 作者 提出了一个自动收集 ChatGPT 对话的流水线,通过从特定数据集中采样「种子」的方式,让 ChatGPT 自我对话,批量生成高质量多轮对话数据集。其中如果使用领域特定数据集,比如医学问答数据集,就可以生成高质量垂直领域语料。
第十三重 OpenChineseLLaMA
  • 【LLMs 入门实战 】OpenChineseLLaMA 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/OpenLMLab/O…
    • 模型:huggingface.co/openlmlab/o…
    • 介绍:基于 LLaMA-7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。
第十四重 Panda
  • 【LLMs 入门实战 】Panda 学习与实战
    • 论文名称:Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models
    • 论文地址:arxiv.org/pdf/2305.03…
    • Github 代码:github.com/dandelionsl…
    • 模型:
    • 介绍:开源了基于LLaMA-7B, -13B, -33B, -65B 进行中文领域上的持续预训练的语言模型, 使用了接近 15M 条数据进行二次预训练。
第十五重 Ziya-LLaMA-13B
  • 【LLMs 入门实战 】 Ziya-LLaMA-13B 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:huggingface.co/IDEA-CCNL/Z…
    • 模型:
    • 介绍:该项目开源了姜子牙通用大模型V1,是基于LLaMa的130亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。该模型已完成大规模预训练、多任务有监督微调和人类反馈学习三阶段的训练过程。
第十六重 BiLLa
  • 【LLMs 入门实战 】 BiLLa 学习与实战
    • 论文名称:BiLLa: A Bilingual LLaMA with Enhanced Reasoning Ability
    • 论文地址:
    • Github 代码:github.com/Neutralzz/B…
    • 模型:
    • 介绍:该项目开源了推理能力增强的中英双语LLaMA模型。模型的主要特性有:较大提升LLaMA的中文理解能力,并尽可能减少对原始LLaMA英文能力的损伤;训练过程增加较多的任务型数据,利用ChatGPT生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。
第十七重 Luotuo-Chinese-LLM
  • 【LLMs 入门实战 】 Luotuo-Chinese-LLM 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/LC1332/Luot…
    • 模型:
    • 介绍:囊括了一系列中文大语言模型开源项目,包含了一系列基于已有开源模型(ChatGLM, MOSS, LLaMA)进行二次微调的语言模型,指令微调数据集等。
第十八重 Linly
  • 【LLMs 入门实战 】 Linly 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/CVI-SZU/Lin…
    • 模型:
    • 介绍:提供中文对话模型 Linly-ChatFlow 、中文基础模型 Linly-Chinese-LLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 Linly-ChatFlow 对话模型。
第十九重 ChatYuan
  • 【LLMs 入门实战 】 ChatYuan 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/clue-ai/Cha…
    • 介绍:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
第二十重 CPM-Bee
  • 【LLMs 入门实战 】 CPM-Bee 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/OpenBMB/CPM…
    • 模型:
    • 介绍:一个完全开源、允许商用的百亿参数中英文基座模型。它采用Transformer自回归架构(auto-regressive),在超万亿(trillion)高质量语料上进行预训练,拥有强大的基础能力。开发者和研究者可以在CPM-Bee基座模型的基础上在各类场景进行适配来以创建特定领域的应用模型。
第二十一重 TigerBot
  • 【LLMs 入门实战 】 TigerBot 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/TigerResear…
    • 模型:
    • 介绍:一个多语言多任务的大规模语言模型(LLM),开源了包括模型:TigerBot-7B, TigerBot-7B-base,TigerBot-180B,基本训练和推理代码,100G预训练数据,涵盖金融、法律、百科的领域数据以及API等。
第二十二重 书生·浦语
  • 【LLMs 入门实战 】 书生·浦语 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码:github.com/InternLM/In…
    • 模型:
    • 介绍:商汤科技、上海AI实验室联合香港中文大学、复旦大学和上海交通大学发布千亿级参数大语言模型“书生·浦语”(InternLM)。据悉,“书生·浦语”具有1040亿参数,基于“包含1.6万亿token的多语种高质量数据集”训练而成。
第二十三重 Aquila
  • 【LLMs 入门实战 】 Aquila 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码: github.com/FlagAI-Open…
    • 模型:
    • 介绍:由智源研究院发布,Aquila语言大模型在技术上继承了GPT-3、LLaMA等的架构设计优点,替换了一批更高效的底层算子实现、重新设计实现了中英双语的tokenizer,升级了BMTrain并行训练方法,是在中英文高质量语料基础上从0开始训练的,通过数据质量的控制、多种训练的优化方法,实现在更小的数据集、更短的训练时间,获得比其它开源模型更优的性能。也是首个支持中英双语知识、支持商用许可协议、符合国内数据合规需要的大规模开源语言模型。
第二十四重 baichuan-7B
  • 【LLMs 入门实战 】 baichuan-7B 学习与实战
    • 论文名称:
    • 论文地址:
    • Github 代码: github.com/baichuan-in…
    • 模型:
    • 介绍:由百川智能开发的一个开源可商用的大规模预训练语言模型。基于Transformer结构,在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。

第二层 LLMs to Intelligent Retrieval (IR)

第一重 langchain
  1. 【LLMs 入门实战 —— 十二 】基于 本地知识库 的高效 🤖langchain-ChatGLM
    1. 介绍:langchain-ChatGLM是一个基于本地知识的问答机器人,使用者可以自由配置本地知识,用户问题的答案也是基于本地知识生成的。

第三层 LLMs to Text-to-Image

第一重 Stable Diffusion
  • 【LLMs 入门实战 —— 二十二 】Stable Diffusion 模型学习与实战
    • Github 地址:github.com/gediz/lstei…
    • 预训练模型:huggingface.co/CompVis/sta…
    • 介绍:Stable Diffusion是一种潜在扩散模型(Latent Diffusion Model),能够从文本描述中生成详细的图像。它还可以用于图像修复、图像绘制、文本到图像和图像到图像等任务。简单地说,我们只要给出想要的图片的文字描述在提Stable Diffusion就能生成符合你要求的逼真的图像!
  • 【LLMs 入门实战 —— 二十三 】Stable Diffusion Webui 模型学习与实战
    • Github 地址:github.com/AUTOMATIC11…
    • 预训练模型:huggingface.co/CompVis/sta…
    • 介绍:Stable Diffusion是一款功能异常强大的AI图片生成器。它不仅支持生成图片,使用各种各样的模型来达到你想要的效果,还能训练你自己的专属模型。WebUI使得Stable Diffusion有了一个更直观的用户界面,更适合新手用户。
  • 【LLMs 入门实战 —— 二十四 】Novelai 模型学习与实战
  • 【LLMs 入门实战 —— 二十五 】lora 模型学习与实战
    • Github 地址:github.com/microsoft/L…
    • 预训练模型:huggingface.co/johnsmith00…
    • 介绍:LoRA的全称是LoRA: Low-Rank Adaptation of Large Language Models,可以理解为stable diffusion(SD)模型的一种插件,和hyper-network,controlNet一样,都是在不修改SD模型的前提下,利用少量数据训练出一种画风/IP/人物,实现定制化需求,所需的训练资源比训练SD模要小很多,非常适合社区使用者和个人开发者。

第四层 LLMs to Visual Question Answering (VQA)

第一重 BLIP
  • 【LLMs 入门实战 —— 二十二】 BLIP 模型学习与实战

    • 论文名称:BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

    • 论文地址:arxiv.org/abs/2201.12…

    • 代码地址:github.com/salesforce/…

    • 局限性:

      • 模型角度

        :

        • 现有方法:大多数方法要么采用基于编码器的模型,要么采用编码器-解码器模型。
        • 存在问题:基于编码器的模型不太容易直接转换到文本生成任务(例如图像字幕),而编码器-解码器模型尚未成功用于图像文本检索任务
      • 数据角度: 大多数SOTA的方法(如CLIP、ALBEF等)都在从web上收集到的图文对上进行预训练。尽管通过扩展数据集获得了性能提升,但 BLIP 的研究表明,对于视觉语言学习来说,有噪声的网络文本是次优的。

    • BLIP总体思路:作为新的 VLP 框架,BLIP 用于统一视觉语言理解和生成的 Bootstrapping Language-Image 预训练,可以灵活地迁移到视觉语言理解和生成任务。 BLIP 通过引导字幕有效地利用了嘈杂的网络数据,字幕生成器生成合成字幕,过滤器去除嘈杂的字幕

    • 贡献:

      • (1) 编码器-解码器 (MED) 的多模式混合:一种用于有效多任务预训练和灵活迁移学习的新模型架构。MED可以作为单模态编码器、基于图像的文本编码器或基于图像的文本解码器工作。该模型与三个视觉语言目标联合预训练:图像文本对比学习、图像文本匹配和图像条件语言建模
      • (2) 字幕和过滤(Captioning and Filtering,CapFilt):一种新的数据集增强方法,用于从噪声图像-文本对中学习。作者将预先训练的MED分为两个模块: 一个字幕器,用于生成给定web图像的合成字幕,以及一个过滤器,用于从原始web文本和合成文本中删除嘈杂的字幕
第二重 BLIP2
  • 【LLMs 入门实战 —— 二十六】 BLIP2 模型学习与实战
    • 论文名称:BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
    • 单位:Salesforce 研究院
    • 论文地址:arxiv.org/abs/2301.12…
    • 代码地址:github.com/salesforce/…
    • HF上的Demo:huggingface.co/spaces/Sale…
    • 动机
      • 由于大规模模型的端到端训练,视觉和语言预训练的成本变得越来越高
      • 为了降低计算成本并抵消灾难性遗忘的问题,希望在 Vision-language pre-training (VLP) 中固定视觉模型参数与语言模型参数。然而,由于语言模型在其单模态预训练期间没有看到图像,因此冻结它们使得视觉语言对齐尤其具有挑战性
    • 介绍:
      • BLIP-2, 一种通用而有效的预训练策略,它从现成的冻结预训练图像编码器和冻结的大型语言模型中引导视觉语言预训练。
      • 通过一个轻量级的 Querying Transformer (Q-Former是一个轻量级的 transformer,它使用一组可学习的查询向量来从冻结图像编码器中提取视觉特征,为LLM提供最有用的视觉特征,以输出所需的文本) 弥补了模态 gap,该 Transformer 分两个阶段进行预训练:
      • 第一阶段:从冻结图像编码器引导视觉语言表示学习,强制 Q-Former 学习与文本最相关的视觉表示;
      • 第二阶段:将视觉从冻结的语言模型引导到语言生成学习,将Q-Former的输出连接到冻结的LLM,并对Q-Former进行训练,使其输出视觉表示能够被LLM解释。
第三重 MiniGPT-4
  • 【LLMs 入门实战 —— 八 】MiniGPT-4 模型学习与实战
    • Github 链接: github.com/Vision-CAIR…
    • 介绍: MiniGPT-4,是来自阿卜杜拉国王科技大学的几位博士做的,它能提供类似 GPT-4 的图像理解与对话能力
第四重 VisualGLM-6B
  • 【LLMs 入门实战 —— 十七 】 VisualGLM-6B 模型学习与实战
    • Github 链接: github.com/THUDM/Visua…
    • Huggingface 链接:huggingface.co/THUDM/visua…
    • 动机:OpenAI 的GPT-4样例中展现出令人印象深刻的多模态理解能力,但是能理解图像的中文开源对话模型仍是空白。
    • 介绍:VisualGLM-6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM-6B,具有 62 亿参数;图像部分通过训练 BLIP2-Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。VisualGLM-6B 依靠来自于 CogView 数据集的30M高质量中文图文对,与 300M 经过筛选的英文图文对进行预训练,中英文权重相同。该训练方式较好地将视觉信息对齐到 ChatGLM 的语义空间;之后的微调阶段,模型在长视觉问答数据上训练,以生成符合人类偏好的答案。
    • github 地址:github.com/THUDM/Visua…
第五重 Ziya-Visual
  • 【LLMs 入门实战 】 Ziya-Visual 模型学习与实战
    • Ziya-Visual模型开源地址:huggingface.co/IDEA-CCNL/Z…
    • Demo体验地址:huggingface.co/spaces/IDEA…
    • Ziya开源模型:huggingface.co/IDEA-CCNL/Z…
    • 封神榜项目主页:github.com/IDEA-CCNL/F…
    • 介绍:自从3月份OpenAI发布具有识图能力的多模态大模型GPT-4,大模型的能力便不再局限于文本输入-文本输出的形式,人们可以上传视觉图片来与大模型进行聊天和交互。遗憾的是,时至今日绝大部分用户也都还没有拿到GPT-4输入图片的权限,无法体验到结合视觉和语言两大模态的大模型的卓越能力,而且GPT-4也没有叙述或者开源GPT模型多模态预训练的方案。与之相对的是,学术界和开源界则充分探索了视觉预训练模型(比如ViT, Vision Transformer)与大语言模型(LLM,Large Language Model)结合,从而让目前的LLM获得输入图片、认识图片的能力。其中的代表工作包括国外团队开源的Mini-GPT4[1],LLaVA[2]等,国内团队开源的VisuaGLM[3],mPLUG-Owl[4]等工作。大部分的开源方案参考了BLIP2的训练方案[5],选择冻结LLM部分的参数训练或者采用Lora等parameter-efficient的微调训练方式。IDEA研究院封神榜团队在5月17日发布“姜子牙通用大模型v1”之后,继续发布Ziya-BLIP2-14B-Visual-v1多模态大模型(以下简称Ziya-Visual模型)。和Ziya大模型一样,Ziya-Visual模型具备中英双语能力,特别是中文能力较为突出。和所有基于BLIP2的方案类似,我们简单高效的扩展了LLM的识图能力。该模型对比VisualGLM、mPLUG-Owl模型,在视觉问答(VQA)评价和GPT-4打分评价[2]中,展现了一些优势。

第五层 LLMs to Automatic Speech Recognition (ASR)

第一重 Massively Multilingual Speech (MMS,大规模多语种语音)
  • 【LLMs 入门实战 —— 二十 】 Massively Multilingual Speech (MMS,大规模多语种语音) 模型学习与实战
    • 论文:Scaling Speech Technology to 1,000+ Languages
    • 代码:fairseq/tree/main/examples/mms
    • 公告:ai.facebook.com/blog/multil…
    • 介绍:Meta 在 GitHub 上再次开源了一款全新的 AI 语言模型——Massively Multilingual Speech (MMS,大规模多语种语音),它与 ChatGPT 有着很大的不同,这款新的语言模型可以识别 4000 多种口头语言并生成 1100 多种语音(文本到语音)。

第六层 LLMs to Text To Speech (TTS)

第一重 Massively Multilingual Speech (MMS,大规模多语种语音)
  • 【LLMs 入门实战 —— 二十 】 Massively Multilingual Speech (MMS,大规模多语种语音) 模型学习与实战
    • 论文:Scaling Speech Technology to 1,000+ Languages
    • 代码:fairseq/tree/main/examples/mms
    • 公告:ai.facebook.com/blog/multil…
    • 介绍:Meta 在 GitHub 上再次开源了一款全新的 AI 语言模型——Massively Multilingual Speech (MMS,大规模多语种语音),它与 ChatGPT 有着很大的不同,这款新的语言模型可以识别 4000 多种口头语言并生成 1100 多种语音(文本到语音)。

第七层 LLMs to Artifact

第一重 AutoGPT
  • AutoGPT 使用和部署
    • 介绍:Auto-GPT是一个基于ChatGPT的工具,他能帮你自动完成各种任务,比如写代码、写报告、做调研等等。使用它时,你只需要告诉他要扮演的角色和要实现的目标,然后他就会利用ChatGPT和谷歌搜索等工具,不断“思考”如何接近目标并执行,你甚至可以看到他的思考过程。

第八层 LLMs to Parameter Efficient Fine-Tuning (PEFT)

第一重 LLMTune
  • 【LLMs 入门实战 —— 十六 】 LLMTune 模型学习与实战
    • 动机:大语言模型虽然能力很强,目前开源生态也很丰富,但是在特定领域微调大模型依然需要大规格的显卡。例如,清华大学发布的ChatGLM-6B,参数规模60亿,在没有量化的情况下微调需要14GB显存(parameter-efficient fine-tuning,PEFT)。在没有任何优化的前提下,每10亿参数的全精度(32bit)模型载入到显存中就需要4GB,而int8量化后也需要1GB显存。而目前开源最强的模型LLaMA,其最高参数维650亿规模,全精度模型载入就需要260GB,显然已经超出了大部分人的硬件水平。更不要说对模型进行微调(微调需要训练更新参数,推理只需要前向计算即可,因此,微调需要更多的显存才能支持)。
    • 介绍:Cornell Tech开源的LLMTune就是为了降低大模型微调难度所提出的一种解决方案。对于650亿参数的LLaMA模型微调仅需要40GB显存即可。
    • github 地址: github.com/kuleshov-gr…
第二重 QLoRA
  • 【LLMs 入门实战 —— 二十 】 QLoRA 模型学习与实战
    • huggingface.co/BlinkDL
    • artidoro/qlora
    • 模型:timdettmers (Tim Dettmers)
    • 量化代码:TimDettmers/bitsandbytes
    • BLOG : Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA
    • Demo环境:Guanaco Playground Tgi - a Hugging Face Space by uwnlp
    • 介绍:5月24日华盛顿大学的研究者发布了QLoRA技术及用其生成的Guanaco大模型。
      • 特点:
        • 在Vicuna基准测试中表现优于所有先前公开发布的模型,达到ChatGPT性能水平的99.3%,仅需要单个GPU上的24小时微调时间;
        • QLORA引入了一些创新来节省内存而不牺牲性能:
          • (a)4位NormalFloat(NF4),这是一种对于正态分布权重来说在信息论上是最优的数据类型;
          • (b)双量化,通过量化量化常数来减少平均内存占用;
          • (c)分页优化器,用于管理内存峰值。
  • 【LLMs 入门实战 —— 二十七 】【QLoRA实战】使用单卡高效微调bloom-7b1
    • huggingface.co/BlinkDL
    • artidoro/qlora
    • 模型:timdettmers (Tim Dettmers)
    • 量化代码:TimDettmers/bitsandbytes
    • BLOG : Making LLMs even more accessible with bitsandbytes, 4-bit quantization and QLoRA
  • 【LLMs 入门实战 】Anima 学习与实战
    • Github 代码:github.com/lyogavin/An…
    • 模型:huggingface.co/lyogavin/An…
    • 动机:之前大部分开源可finetune的模型大都是比较小的模型7B或者13B,虽然可以在一些简单的chatbot评测集上,通过finetune训练有不错的表现。但是由于这些模型规模还是有限,LLM核心的reasoning的能力还是相对比较弱。这就是为什么很多这种小规模的模型在实际应用的场景表现像是个玩具。chatbot评测集比较简单,真正比较考验模型能力的复杂逻辑推理及数学问题上小模型和大模型差距还是很明显的。
    • 介绍:QLoRA的优化方法,第一次让33B规模的模型可以比较民主化的,比较低成本的finetune训练,让33B模型的普及使用成为了可能。我们认为33B模型既可以发挥大规模模型的比较强的推理能力,又可以针对私有业务领域数据进行灵活的finetune训练提升对于LLM的控制力。
第三重 Parallel
  • 分布式训练神器 之 ZeRO 学习
    • 动机:虽然 DataParallel (DP) 因为简单易实现,所以目前应用相比于其他两种 广泛,但是 由于 DataParallel (DP) 需要 每张卡都存储一个模型,导致 显存大小 成为 制约模型规模 的 主要因素。
    • 核心思路:去除数据并行中的冗余参数,使每张卡只存储一部分模型状态,从而减少显存占用。
  • 分布式训练神器 之 分布式训练方法汇总
    • DataParallel分布式训练
    • Distributed分布式训练
    • multiprocess启动
    • AMP混合精度训练
    • horovod分布式训练
    • deepspeed分布式训练
    • accelerate分布式训练
    • transformers的Trainer分布式训练
第四重 Trick
  • LLMs Trick

第九层 LLMs to Vertical Field (VF)

第一重 金融领域
  • 【LLMs 入门实战 —— 十九】 聚宝盆(Cornucopia) 模型学习与实战

    • 聚宝盆(Cornucopia) 开源了经过中文金融知识指令精调/指令微调(Instruct-tuning) 的LLaMA-7B模型。通过中文金融公开数据+爬取的金融数据构建指令数据集,并在此基础上对LLaMA进行了指令微调,提高了 LLaMA 在金融领域的问答效果。
    • github: jerry1993-tech/Cornucopia-LLaMA-Fin-Chinese
  • 【LLMs 入门实战 】 BBT-FinCUGE-Applications 学习与实战

    • 论文名称:
    • 论文地址:github.com/ssymmetry/B…
    • 介绍:开源了中文金融领域开源语料库BBT-FinCorpus,中文金融领域知识增强型预训练语言模型BBT-FinT5及中文金融领域自然语言处理评测基准CFLEB。
  • 【LLMs 入门实战 】 XuanYuan(轩辕) 学习与实战

    :首个千亿级中文金融对话模型

    • 论文名称:
    • 论文地址:huggingface.co/xyz-nlp/Xua…
    • 介绍:轩辕是国内首个开源的千亿级中文对话大模型,同时也是首个针对中文金融领域优化的千亿级开源对话大模型。轩辕在BLOOM-176B的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调,它不仅可以应对通用领域的问题,也可以解答与金融相关的各类问题,为用户提供准确、全面的金融信息和建议。
第二重 医疗领域
  • 【LLMs 入门实战 —— 二十九 】HuatuoGPT (华佗GPT) 学习与实战
    • HuatuoGPT (华佗GPT), Towards Taming Language Models To Be a Doctor.
    • 论文地址:arxiv.org/pdf/2305.15…
    • Github 代码:github.com/FreedomInte…
    • 模型:huggingface.co/FreedomInte…
    • HuatuoGPT 体验网站:www.huatuogpt.cn/
    • HuatuoGPT (华佗GPT) 监督微调(SFT):HuatuoGPT-sft-data-v1
    • 动机:
      • 益增长的在线和医院快速医疗咨询需求 与 医生的时间和精力 矛盾问题
      • 目前并没有 开源而且高质量的 可用于训练 medical LLMs,所以 为 训练 medical LLMs 而构建 high-quality instruction training data 至关重要;
      • medical LLMs 诊断能力需要进行 彻底评估和测试,避免 medical LLMs 误诊问题;
    • 介绍:
      • HuatuoGPT (华佗GPT) 知识库是一个在庞大的中国医学语料库上训练的大型语言模型。HuatuoGPT (华佗GPT) 的目标是为医疗咨询场景构建一个更专业的“ChatGPT”。
  • 【LLMs 入门实战 】DoctorGLM 学习与实战
    • 论文名称:
    • 论文地址:github.com/xionghongli…
    • 介绍:基于 ChatGLM-6B的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括lora、p-tuningv2等微调及部署
  • 【LLMs 入门实战 】 BenTsao 学习与实战
    • 论文名称:
    • 论文地址:github.com/SCIR-HI/Hua…
    • 介绍:开源了经过中文医学指令精调/指令微调(Instruct-tuning) 的LLaMA-7B模型。通过医学知识图谱和GPT3.5 API构建了中文医学指令数据集,并在此基础上对LLaMA进行了指令微调,提高了LLaMA在医疗领域的问答效果。
  • 【LLMs 入门实战 】 BianQue 学习与实战
    • 论文名称:
    • 论文地址:github.com/scutcyr/Bia…
    • 介绍:一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于ClueAI/ChatYuan-large-v2作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。
  • 【LLMs 入门实战 】 Med-ChatGLM 学习与实战
    • 论文名称:
    • 论文地址:github.com/SCIR-HI/Med…
    • 介绍:基于中文医学知识的ChatGLM模型微调,微调数据与BenTsao相同。
  • 【LLMs 入门实战 】 QiZhenGPT 学习与实战
    • 论文名称:
    • 论文地址:github.com/CMKRG/QiZhe…
    • 介绍:该项目利用启真医学知识库构建的中文医学指令数据集,并基于此在LLaMA-7B模型上进行指令精调,大幅提高了模型在中文医疗场景下效果,首先针对药品知识问答发布了评测数据集,后续计划优化疾病、手术、检验等方面的问答效果,并针对医患问答、病历自动生成等应用展开拓展。
  • 【LLMs 入门实战 】 ChatMed 学习与实战
    • 论文名称:
    • 论文地址:github.com/michael-wzh…
    • 介绍:该项目推出ChatMed系列中文医疗大规模语言模型,模型主干为LlaMA-7b并采用LoRA微调,具体包括ChatMed-Consult : 基于中文医疗在线问诊数据集ChatMed_Consult_Dataset的50w+在线问诊+ChatGPT回复作为训练集;ChatMed-TCM : 基于中医药指令数据集ChatMed_TCM_Dataset,以开源的中医药知识图谱为基础,采用以实体为中心的自指令方法(entity-centric self-instruct),调用ChatGPT得到2.6w+的围绕中医药的指令数据训练得到。
  • 【LLMs 入门实战 】 XrayGLM 学习与实战
    • 论文名称:
    • 论文地址:github.com/WangRongshe…
    • 介绍:该项目为促进中文领域医学多模态大模型的研究发展,发布了XrayGLM数据集及模型,其在医学影像诊断和多轮交互对话上显示出了非凡的潜力。
第三重 法律领域
  • 【LLMs 入门实战 】 LaWGPT 学习与实战

    :基于中文法律知识的大语言模型

    • 论文名称:
    • 论文地址:github.com/pengxiao-so…
    • 介绍:该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。
  • 【LLMs 入门实战 】 LaWGPT 学习与实战

    :中文法律大模型

    • 论文名称:
    • 论文地址:github.com/CSHaitao/Le…
    • 介绍:LexiLaw 是一个基于 ChatGLM-6B微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。
  • 【LLMs 入门实战 】 Lawyer LLaMA 学习与实战

    :中文法律LLaMA

    • 论文名称:
    • 论文地址:github.com/AndrewZhe/l…
    • 介绍:开源了一系列法律领域的指令微调数据和基于LLaMA训练的中文法律大模型的参数。Lawyer LLaMA 首先在大规模法律语料上进行了continual pretraining。在此基础上,借助ChatGPT收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。
第四重 教育领域
  • 【LLMs 入门实战 】 桃李(Taoli) 学习与实战
    • 论文名称:
    • 论文地址:github.com/blcuicall/t…
    • 介绍:一个在国际中文教育领域数据上进行了额外训练的模型。项目基于目前国际中文教育领域流通的500余册国际中文教育教材与教辅书、汉语水平考试试题以及汉语学习者词典等,构建了国际中文教育资源库,构造了共计 88000 条的高质量国际中文教育问答数据集,并利用收集到的数据对模型进行指令微调,让模型习得将知识应用到具体场景中的能力。
第五重 文化领域
  • 【LLMs 入门实战 】 Firefly 学习与实战
    • 论文名称:
    • 论文地址:github.com/yangjianxin…
    • 介绍:中文对话式大语言模型,构造了许多与中华文化相关的数据,以提升模型这方面的表现,如对联、作诗、文言文翻译、散文、金庸小说等。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/45395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

行为模式9.策略模式------促销活动设计方案

行为型模式 模板方法模式(Template Method Pattern)命令模式(Command Pattern)迭代器模式(Iterator Pattern)观察者模式(Observer Pattern)中介者模式(Mediator Pattern…

Rust入门实战 编写Minecraft启动器#5启动游戏

首发于Enaium的个人博客 好了,我们已经完成了所有的准备工作,现在我们可以开始编写启动游戏的代码了。 首先我们需要添加几个依赖。 model { path "../model" } parse { path "../parse" } download { path "../downlo…

ensp防火墙综合实验作业+实验报告

实验目的要求及拓扑图: 我的拓扑: 更改防火墙和交换机: [USG6000V1-GigabitEthernet0/0/0]ip address 192.168.110.5 24 [USG6000V1-GigabitEthernet0/0/0]service-manage all permit [Huawei]vlan batch 10 20 [Huawei]int g0/0/2 [Huawei-…

python 端口的转发

实现端口的转发 tcpsocket.py 对基础的socket进行了封装 import socketclass baseSocket:def service(host:str,port:int,maxSuspend:int)->socket: service_socket socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 创建 socket 对象service_socket.setso…

GPT的架构与应用 - Transformer教程

在过去的几年里,人工智能技术取得了巨大的进展,其中最引人注目的成就是生成式预训练变换器(GPT)的出现。GPT是一种基于Transformer架构的模型,已在自然语言处理(NLP)领域掀起了革命性变化。今天…

springboot vue 实现验证码

要在Spring Boot和Vue.js中实现验证码功能&#xff0c;可以按照以下步骤进行操作&#xff1a; 在Spring Boot项目中添加验证码相关的依赖。可以使用Google的Kaptcha库来生成验证码图片。在pom.xml中添加以下依赖&#xff1a; <dependency><groupId>com.github.pe…

安全开发--多语言基础知识

注释&#xff1a;还是要特别说明一下&#xff0c;想成为专业开发者不要看本文&#xff0c;本文是自己从业安全以来的一些经验总结&#xff0c;所有知识点也只限于网络安全这点事儿&#xff0c;再多搞不明白了。 开发语言 笼统的按照是否编译成机器码分类开发语言&#xff0c;…

Perl 语言开发(十二):面向对象编程,深入理解与实践

目录 1. 概述 2. 面向对象编程基础 2.1 类与对象的基本概念 3. Perl中的面向对象编程 3.1 定义类和对象 3.1.1 创建类 3.1.2 创建对象 3.2.1 访问器和修改器 3.3 继承 3.3.1 创建基类 3.3.2 创建子类 3.3.3 使用继承 3.4 多态 3.4.1 方法重写 3.4.2 动态绑定 4…

git常用命令及git分支

git常用命令及git分支 git常用命令设置用户签名初始化本地库查看本地库状态将文件添加到暂存区提交到本地库查看历史记录版本穿梭 git分支什么是分支分支的好处分支的操作查看分支创建分支切换分支合并分支合并冲突 git常用命令 设置用户签名 //设置用户签名 git config --gl…

linux-conda环境安装教程

Linux Conda 环境安装教程 本文档详细介绍了在 Linux 系统上安装和使用 Conda 环境的步骤。 1. 安装 Conda 1.1 下载 Anaconda 安装包 首先&#xff0c;访问 Anaconda 官方网站 并下载适用于 Linux 系统的 Anaconda 安装包。 或者使用以下命令直接从终端下载&#xff1a; …

Datawhale 2024 年 AI 夏令营第二期——基于术语词典干预的机器翻译挑战赛

#AI夏令营 #Datawhale #夏令营 1.赛事简介 目前神经机器翻译技术已经取得了很大的突破&#xff0c;但在特定领域或行业中&#xff0c;由于机器翻译难以保证术语的一致性&#xff0c;导致翻译效果还不够理想。对于术语名词、人名地名等机器翻译不准确的结果&#xff0c;可以通…

emqx 负载均衡配置 HAProxy 健康检查 轮询 haship

HAProxy配置文件 配置文件&#xff1a; /etc/haproxy/haproxy.cfg 负载均衡参数&#xff1a; 轮询方式轮询注解roundrobin基于权重进行轮叫调度的算法&#xff0c;在服务器的性能分布比较均匀时&#xff0c;这是一种最公平合理&#xff0c;常用的算法。此算法使用较为频…

【银河麒麟高级服务器操作系统】数据中心系统异常卡死分析处理建议

了解银河麒麟操作系统更多全新产品&#xff0c;请点击访问&#xff1a;https://product.kylinos.cn 1.服务器环境以及配置 【机型】浪潮NF5280M5 处理器&#xff1a; Intel 内存&#xff1a; 1T 【内核版本】 4.19.90-24.4.v2101.ky10.x86_64 【OS镜像版本】 银河麒麟…

PDF 中图表的解析探究

PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来&#xff0c;对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格&#xff0c;这篇文章主要记录了对表格的探究。还有&#xff0c;我个人主要做日本项目&…

MFC Ribbon菜单 - 中英文实时切换方法

简介 最近在搞一个老外的项目&#xff0c;本来谈的好好的&#xff0c;纯英文界面。项目接近尾声了&#xff0c;又提出了中英文实时切换的新需求&#xff0c;没办法就只能想办法&#xff0c;毕竟客户最大嘛。 实现方法 还好本来的ribbon英文菜单不复杂&#xff0c;就用纯C编码…

Android上如何使用perfetto分析systrace

Android上如何使用perfetto分析systrace Perfetto 是一个用于性能分析的工具&#xff0c;提供了对 Android 系统内部工作情况的详细视图。它可以用来替代传统的 systrace 工具&#xff0c;提供更加全面的性能分析功能。以下是如何使用 Perfetto 分析 Systrace 数据的详细指南&…

粉丝问我:大龄干运维还有出路吗?

这兄弟&#xff1a; 18年参加培训班&#xff0c;培训的java&#xff0c;结果学的不好。又去机构学了linux云计算&#xff0c;去做了运维&#xff0c;19年去一家网络公司做了idc&#xff0c;可以说这两年自己不努力&#xff0c;什么都没学到&#xff0c;基本等于零。 我现在就…

Python轻松添加行编号到Word文档及删除行编号

Word文档中的行号&#xff08;行编号&#xff09;功能是对于精细化的文档编辑以及解析非常有用的功能。添加行号能够极大地提升文档的可读性和定位效率&#xff0c;尤其是在需要引用特定行内容时&#xff0c;为读者提供了清晰的指引&#xff0c;避免了不必要的混淆和误解。然而…

Java BigInteger 类

目录 BigInteger 1. 如何获取一个BigInteger类型的对象&#xff1f; &#xff08;1&#xff09;构造方法 &#xff08;2&#xff09;静态方法 2. 常用方法 BigInteger 可以用来表示很大很大的数&#xff0c;有多大都可以。通过创建对象调用相应的方法。详见&#xff1a;…

【深度学习】本地运行 GraphRAG + Ollama

随着人工智能不断革新各个行业&#xff0c;对高效且经济的解决方案的需求日益增长。GraphRAG Local Ollama 应运而生&#xff0c;它是一款强大的 Microsoft GraphRAG 改进版&#xff0c;集成了使用 Ollama 下载的本地模型。这种改进让您可以告别昂贵的 OpenAPI 模型&#xff0c…