mindspore打卡23天之微调本地MindNLP ChatGLM-6B StreamChat

MindNLP ChatGLM-6B StreamChat

本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。

1 环境配置

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install mdtex2html

配置网络线路

!export HF_ENDPOINT=https://hf-mirror.com

2 代码开发

下载权重大约需要10分钟

from mindnlp.transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import gradio as gr
import mdtex2htmlmodel = AutoModelForSeq2SeqLM.from_pretrained('ZhipuAI/ChatGLM-6B', mirror="modelscope").half()
model.set_train(False)
tokenizer = AutoTokenizer.from_pretrained('ZhipuAI/ChatGLM-6B', mirror="modelscope")
  0%|          | 0.00/773 [00:00<?, ?B/s]0%|          | 0.00/32.6k [00:00<?, ?B/s]Downloading shards:   0%|          | 0/8 [00:00<?, ?it/s]0%|          | 0.00/1.62G [00:00<?, ?B/s]0%|          | 0.00/1.75G [00:00<?, ?B/s]0%|          | 0.00/1.84G [00:00<?, ?B/s]0%|          | 0.00/1.78G [00:00<?, ?B/s]0%|          | 0.00/1.75G [00:00<?, ?B/s]0%|          | 0.00/1.75G [00:00<?, ?B/s]0%|          | 0.00/1.00G [00:00<?, ?B/s]0%|          | 0.00/1.00G [00:00<?, ?B/s]Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]0%|          | 0.00/441 [00:00<?, ?B/s]0%|          | 0.00/2.58M [00:00<?, ?B/s]

可以修改下列参数和prompt体验模型

prompt = '你好'
history = []
response, _ = model.chat(tokenizer, prompt, history=history, max_length=20)
response
|The dtype of attention mask (Float32) is not bool/'你好👋!我是人工智能助手 ChatGLM-6B'
prompt = '你好 请问文本解码原理'
history = []
response, _ = model.chat(tokenizer, prompt, history=history, max_length=20)
response
-'文本解码是指将文本转换为计算机能够理解的形式的过程'
prompt = '你好 请问文本解码原理,请列出数学原理'
history = []
response, _ = model.chat(tokenizer, prompt, history=history, max_length=200)
response
-'文本解码是指将文本编码为数字形式的过程,通常使用数字信号处理技术来实现。\n\n文本解码的数学原理可以概括为以下几个方面:\n\n1. 文本编码原理:文本编码是指将文本转换为压缩格式的过程。常用的文本编码方法包括:压缩编码、词袋模型、长短时记忆网络等。这些模型通常使用数学模型来描述文本的特征和模式,并使用这些模型来预测下一个单词或字符。\n\n2. 数字信号处理技术:数字信号处理技术是指使用数字电路和算法来处理数字信号的方法。文本解码通常需要使用数字信号处理技术来提取文本的特征,并使用数字信号处理技术来压缩和解码文本。\n\n3. 熵编码原理:熵编码是指使用熵值来编码文本的方法。熵值是一个统计量,表示文本的不确定性。常用的熵编码方法包括:信息熵、高斯熵等'
print("yangge mindspore打卡23天之MindNLP ChatGLM-6B StreamChat   2024  07 11")
yangge mindspore打卡23天之MindNLP ChatGLM-6B StreamChat   2024  07 11

文本解码原理--以MindNLP为例

回顾:自回归语言模型

根据前文预测下一个单词

一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积

  • 𝑊_0:初始上下文单词序列
  • 𝑇: 时间步
  • 当生成EOS标签时,停止生成。

MindNLP/huggingface Transformers提供的文本生成方法

Greedy search

在每个时间步𝑡都简单地选择概率最高的词作为当前输出词:

𝑤_𝑡=𝑎𝑟𝑔𝑚𝑎𝑥_𝑤 𝑃(𝑤|𝑤_(1:𝑡−1))

按照贪心搜索输出序列(“The”,“nice”,“woman”) 的条件概率为:0.5 x 0.4 = 0.2

缺点: 错过了隐藏在低概率词后面的高概率词,如:dog=0.5, has=0.9
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip uninstall mindvision -y
!pip uninstall mindinsight -y
Found existing installation: mindvision 0.1.0
Uninstalling mindvision-0.1.0:Successfully uninstalled mindvision-0.1.0
[33mWARNING: Skipping mindinsight as it is not installed.[0m[33m
[0m
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp
#greedy_searchfrom mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')# generate text until the output length (which includes the context length) reaches 50
greedy_output = model.generate(input_ids, max_length=50)print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))
Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 1.016 seconds.
Prefix dict has been built successfully.0%|          | 0.00/26.0 [00:00<?, ?B/s]0%|          | 0.00/0.99M [00:00<?, ?B/s]0%|          | 0.00/446k [00:00<?, ?B/s]0%|          | 0.00/1.29M [00:00<?, ?B/s]0%|          | 0.00/665 [00:00<?, ?B/s]0%|          | 0.00/523M [00:00<?, ?B/s]Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with my dog. I'm not sure if I'll ever be able to walk with my dog.I'm not sure if I'll

Beam search

Beam search通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。如图以 num_beams=2 为例:

(“The”,“dog”,“has”) : 0.4 * 0.9 = 0.36

(“The”,“nice”,“woman”) : 0.5 * 0.4 = 0.20

优点:一定程度保留最优路径

缺点:1. 无法解决重复问题;2. 开放域生成效果差

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')# activate beam search and early_stopping
beam_output = model.generate(input_ids, max_length=50, num_beams=5, early_stopping=True
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')# set no_repeat_ngram_size to 2
beam_output = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2, early_stopping=True
)print("Beam search with ngram, Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')# set return_num_sequences > 1
beam_outputs = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True
)# now we have 3 output sequences
print("return_num_sequences, Output:\n" + 100 * '-')
for i, beam_output in enumerate(beam_outputs):print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
print(100 * '-')
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I don't think I'll ever be able to walk with her again.""I don't think I
----------------------------------------------------------------------------------------------------
Beam search with ngram, Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like I'm
----------------------------------------------------------------------------------------------------
return_num_sequences, Output:
----------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like I'm
1: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like she's
2: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like we're
3: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like I've
4: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again.""I'm not sure what to say to that," she said. "I mean, it's not like I can
----------------------------------------------------------------------------------------------------

Beam search issues
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

缺点:1. 无法解决重复问题;2. 开放域生成效果差

Repeat problem
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

n-gram 惩罚:

将出现过的候选词的概率设置为 0

设置no_repeat_ngram_size=2 ,任意 2-gram 不会出现两次

Notice: 实际文本生成需要重复出现

Sample

根据当前条件概率分布随机选择输出词𝑤_𝑡

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(“car”) ~P(w∣"The")
(“drives”) ~P(w∣"The",“car”)
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

优点:文本生成多样性高

缺点:生成文本不连续

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(input_ids, do_sample=True, max_length=50, top_k=0
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"I realized what Neddy meant when he first launched the website. "Thank you so much for joining."I

Temperature
降低softmax 的temperature使 P(w∣w1:t−1​)分布更陡峭

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

增加高概率单词的似然并降低低概率单词的似然

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')mindspore.set_seed(1234)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(input_ids, do_sample=True, max_length=50, top_k=0,temperature=0.7
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog and have never had a problem with her until now.A large dog named Chucky managed to get a few long stretches of grass on her back and ran around with it for about 5 minutes, ran around

TopK sample

选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TopK sample problems

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将采样池限制为固定大小 K :

  • 在分布比较尖锐的时候产生胡言乱语
  • 在分布比较平坦的时候限制模型的创造力
import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(input_ids, do_sample=True, max_length=50, top_k=50
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog.She's always up for some action, so I have seen her do some stuff with it.Then there's the two of us.The two of us I'm talking about were

Top-P sample

在累积概率超过概率 p 的最小单词集中进行采样,重新归一化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

采样池可以根据下一个词的概率分布动态增加和减少

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')mindspore.set_seed(0)# deactivate top_k sampling and sample only from 92% most likely words
sample_output = model.generate(input_ids, do_sample=True, max_length=50, top_p=0.92, top_k=0
)print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"I realized what Neddy meant when he first launched the website. "Thank you so much for joining."I

top_k_top_p

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModeltokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')mindspore.set_seed(0)
# set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3
sample_outputs = model.generate(input_ids,do_sample=True,max_length=50,top_k=5,top_p=0.95,num_return_sequences=3
)print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
Output:
----------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog."My dog loves the smell of the dog. I'm so happy that she's happy with me."I love to walk with my dog. I'm so happy that she's happy
1: I enjoy walking with my cute dog. I'm a big fan of my cat and her dog, but I don't have the same enthusiasm for her. It's hard not to like her because it is my dog.My husband, who
2: I enjoy walking with my cute dog, but I'm also not sure I would want my dog to walk alone with me."She also told The Daily Beast that the dog is very protective."I think she's very protective of
print("yanggemindspore打卡23天之文本解码原理-以MindNLP为例   2024  07 11")
yanggemindspore打卡23天之文本解码原理-以MindNLP为例   2024  07 11

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/45185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JavaSpringBoot+Vue+uniapp微信小程序校园宿舍管理系统设计与实现(7000字论文参考+源码+LW+部署讲解)

博主介绍&#xff1a;硕士研究生&#xff0c;专注于信息化技术领域开发与管理&#xff0c;会使用java、标准c/c等开发语言&#xff0c;以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年&#xff0c;拥有近12年的管理工作经验&#xff0c;拥有较丰富的技术架…

Linux:NFS共享存储

目录 一、NFS基本概述 二、NFS共享文件实验 2.1、安装nfs和rpcbind软件 2.2、修改配置文件设置共享 2.3、创建共享目录 ​编辑 2.4、开启服务 2.5、客户端验证共享目录可访问 三、tcpdump命令 3.1、概述 3.2、简单表达 3.3、过滤规则 ​编辑 3.4、tcpdump常见参数…

解决Spring Boot中的数据安全与加密

解决Spring Boot中的数据安全与加密 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在现代Web应用和服务中&#xff0c;数据安全性至关重要。本文将深入探讨如何在Spring Boot应用中实现数据安全和…

强化学习实战2:动手写迷宫环境

迷宫环境介绍与创建 迷宫环境图示如下&#xff1a; 如图所示&#xff0c;其为一个 三乘三 的网格世界&#xff0c;我们要让 agent 从 S0 采取策略出发&#xff0c;然后走到 S8&#xff0c;图中红线部分表示障碍不能逾越&#xff0c;其中 S1 和 S4 之间有一个障碍&#xff0c;S…

C语言有哪些特点?

C语言是一种结构化语言&#xff0c;它有着清晰的层次&#xff0c;可按照模块的方式对程序进行编写&#xff0c;十分有利于程序的调试&#xff0c;且c语言的处理和表现能力都非常的强大&#xff0c;依靠非常全面的运算符和多样的数据类型&#xff0c;可以轻易完成各种数据结构的…

Kotlin MultiPlatform(KMP)

Kotlin MultiPlatform 1.KMP 是什么 Kotlin Multiplatform 是一个工具&#xff0c;它让我们用同一种编程语言&#xff08;Kotlin&#xff09;写代码&#xff0c;这些代码可以同时在不同的设备上运行&#xff0c;比如手机、电脑和网页。这样做可以节省时间&#xff0c;因为你不…

1、项目目录设计

文章目录 前言一、项目目录设计 前言 本项目我们将会完成一个Go项目开发框架&#xff0c;该项目不会包含具体的CRUD业务代码&#xff0c;而是从头搭建一个工作中实用的开发框架。让开发者能够熟悉整个项目的搭建流程&#xff0c;能够独立完成项目从0到1的搭建&#xff0c;而且…

编程语言长盛不衰的意思

编程语言长盛不衰的意思 在数字时代的浪潮中&#xff0c;编程语言始终扮演着至关重要的角色。它们不仅是连接人与机器的桥梁&#xff0c;更是推动科技进步和创新的重要力量。然而&#xff0c;当我们提及“编程语言长盛不衰”时&#xff0c;究竟意味着什么呢&#xff1f; 四个…

【RHCE】实验(HTTP,DNS,SELinux,firewalld的运用)

一、题目 二、主服务器配置 1.下载HTTP服务&#xff0c;DNS服务 [rootlocalhost ~]# yum install -y httpd bind 2.开启防火墙&#xff0c;放行服务 # 开启防火墙 [rootlocalhost ~]# systemctl start firewalld # 放行服务 [rootlocalhost ~]# firewall-cmd --add-service…

上班摸鱼吗?一文详解代码生成神器-Velocity

引言 “我不是在教你学坏,而是教你如何提高生产效率。” ----------- 牛顿 人类社会能够一直进步发展出现在的文明世界,最大的一个原因就是这个世界上懒人居多,懒人为了偷懒就需要提高生产效率,效率提高节省下来的时间才能创造出艺术、娱乐以及更高效率的科学技术。程序员…

大语言模型(Large Language Model, LLM)——初步详细了解!!!

LLM 1.1 **基本概念**1.2. **主要特点**1.3. **主要应用**1.4. **著名大语言模型**1.5. **挑战和局限**1.6. **未来发展**2.1. 文献综述与资料收集2.2. 数据分析与预处理2.3. 实验设计与优化2.4. 结果分析与解释2.5. 科研写作与报告6. 知识扩展与创新2.7. 具体工具与平台2.8 示…

MySQL DDL

数据库 1 创建数据库 CREATE DATABASE 数据库名 CREATE DATABASE IF NOT EXISTS 数据库名;&#xff08;判断是否存在) CREATE DATABASE 数据库名 CHARACTER SET 字符 2 查看数据库 SHOW DATABASES; 查看某个数据库的信息 SHOW CAEATE DATABASE 数据库名 3 修改数据库 …

深入理解 WebKit 的 Flexbox 支持:布局优化与实践指南

引言 Flexbox&#xff08;Flexible Box Layout Module&#xff09;是一种现代的 CSS 布局模式&#xff0c;它提供了一种更加高效的方式来在不同的屏幕尺寸和设备上布局、对齐和分配容器内项目的空间&#xff0c;即使它们的大小未知或是动态变化的。WebKit 是一个开源的浏览器引…

信息学奥赛初赛天天练-44-CSP-J2020基础题-排列组合、乘法原理、捆绑法、隔板法、排除法示例及应用

PDF文档公众号回复关键字:20240711 2020 CSP-J 选择题 单项选择题&#xff08;共15题&#xff0c;每题2分&#xff0c;共计30分&#xff1a;每题有且仅有一个正确选项&#xff09; 10.有5 个小朋友并排站成一列&#xff0c;其中有两个小朋友是双胞胎&#xff0c;如果要求这…

dev小熊猫,clion设置模版教程

首先点击工具 然后进入设置 &#xff0c;找到代码模版 然后点击c模版&#xff0c;进入之后直接输入模版之后&#xff0c;&#xff08;还没有结束&#xff01;&#xff01;&#xff01;&#xff09;&#xff0c;先点击应用&#xff0c;然后是确定&#xff01;&#xff01;&#…

【js面试题】深入理解浏览器对象模型(BOM)

面试题&#xff1a;请你说说对bom的理解&#xff0c;常见的bom对象你了解哪些 引言&#xff1a; 浏览器对象模型&#xff08;BOM&#xff09;是JavaScript中用于与浏览器窗口及其内容进行交互的一组对象和方法。 BOM的核心是window对象&#xff0c;它代表了浏览器窗口本身&…

【SQL】DML、DDL、ROLLBACK 、COMMIT详解

DML DML&#xff08;Data Manipulation Language&#xff09;数据操作语言&#xff0c;是用于对数据库中的数据进行基本操作的一种编程语言。DML是数据库管理系统&#xff08;DBMS&#xff09;中的一个重要部分&#xff0c;它允许用户或应用程序对数据库中的数据进行增、删、改…

pacman 软件包管理器命令表格

pacman 是一个软件包管理器&#xff0c;它是 Arch Linux 和基于 Arch 的发行版&#xff08;如 Manjaro 和 Antergos&#xff09;中的标准包管理工具。MSYS2 也采用了 pacman 作为其包管理器&#xff0c;它允许用户安装、更新、升级和卸载软件包。 命令描述pacman -S <packa…

探索GitHub上的两个革命性开源项目

在数字世界中,总有一些项目能够以其创新性和实用性脱颖而出,吸引全球开发者的目光。今天,我们将深入探索GitHub上的两个令人惊叹的开源项目:Comic Translate和GPTPDF,它们不仅改变了我们处理信息的方式,还极大地丰富了我们的数字生活体验。 01 漫画爱好者的福音:Comi…

PostgreSQl 物化视图

物化视图&#xff08;Materialized View&#xff09;是 PostgreSQL 提供的一个扩展功能&#xff0c;它是介于视图和表之间的一种对象。 物化视图和视图的最大区别是它不仅存储定义中的查询语句&#xff0c;而且可以像表一样存储数据。物化视图和表的最大区别是它不支持 INSERT…