使用 MinIO 赢得 RAG 权利

人们常说,在人工智能时代,数据是你的护城河。为此,构建生产级 RAG 应用程序需要合适的数据基础架构来存储、版本控制、处理、评估和查询构成专有语料库的数据块。由于 MinIO 采用数据优先的 AI 方法,因此对于此类项目,我们默认的初始基础结构建议是设置现代数据湖 (MinIO) 和向量数据库。虽然在此过程中可能需要插入其他辅助工具,但这两个基础架构单元是基础。它们将作为随后在将 RAG 应用程序投入生产时遇到的几乎所有任务的重心。

但你陷入了一个难题。您以前听说过这些术语LLM和 RAG,但除此之外,由于未知,您并没有冒险太多。但是,如果有一个“Hello World”或样板应用程序可以帮助您入门,那不是很好吗?

别担心,我在同一条船上。因此,在这篇博客中,我们将演示如何使用 MinIO 使用商用硬件构建基于检索增强生成 (RAG) 的聊天应用程序。

  • 使用 MinIO 存储所有文档、处理过的块和使用矢量数据库的嵌入。

  • 使用 MinIO 的存储桶通知功能在向存储桶添加或删除文档时触发事件

  • Webhook,使用事件并使用 Langchain 处理文档,并将元数据和分块文档保存到元数据桶中

  • 为新添加或删除的分块文档触发 MinIO 存储桶通知事件

  • 一个 Webhook,它使用事件并生成嵌入并将其保存到 MinIO 中保存的向量数据库 (LanceDB)

使用的关键工具

  • MinIO - 用于持久化所有数据的对象存储

  • LanceDB - 将数据持久化在对象存储中的无服务器开源向量数据库

  • Ollama - 在本地运行LLM和嵌入模型(兼容 OpenAI API)

  • Gradio - 与 RAG 应用程序交互的接口

  • FastAPI - 用于接收来自 MinIO 的存储桶通知并公开 Gradio 应用程序的 Webhook 服务器

  • LangChain & Unstructured - 从我们的文档中提取有用的文本,并将它们分块进行嵌入

使用的型号

  • LLM - Phi-3-128K(3.8B参数)

  • 嵌入 - Nomic Embed Text v1.5 ( Matryoshka Embeddings/ 768 Dim, 8K context)

启动 MinIO 服务器

如果您还没有二进制文件,您可以从这里下载它

# Run MinIO detached

!minio server ~/dev/data --console-address :9090 &

启动Ollama Server + Download LLM & Embedding Model

从这里下载Ollama


# Start the Server

!ollama serve

# Download Phi-3 LLM

!ollama pull phi3:3.8b-mini-128k-instruct-q8_0

# Download Nomic Embed Text v1.5

!ollama pull nomic-embed-text:v1.5

# List All the Models

!ollama ls

使用 FastAPI 创建基本 Gradio 应用以测试模型

LLM_MODEL = "phi3:3.8b-mini-128k-instruct-q8_0"

EMBEDDING_MODEL = "nomic-embed-text:v1.5"

LLM_ENDPOINT = "http://localhost:11434/api/chat"

CHAT_API_PATH = "/chat"



def llm_chat(user_question, history):

    history = history or []

    user_message = f"**You**: {user_question}"

    llm_resp = requests.post(LLM_ENDPOINT,

                             json={"model": LLM_MODEL,

                                   "keep_alive""48h"# Keep the model in-memory for 48 hours

                                   "messages": [

                                       {"role""user",

                                        "content": user_question

                                        }

                                   ]},

                             stream=True)

    bot_response = "**AI:** "

    for resp in llm_resp.iter_lines():

        json_data = json.loads(resp)

        bot_response += json_data["message"]["content"]

        yield bot_response


import json

import gradio as gr

import requests

from fastapi import FastAPI, Request, BackgroundTasks

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()


with gr.Blocks(gr.themes.Soft()) as demo:

    gr.Markdown("## RAG with MinIO")

    ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

    ch_interface.chatbot.show_label = False

    ch_interface.chatbot.height = 600


demo.queue()

    


if __name__ == "__main__":

    nest_asyncio.apply()

    app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

    uvicorn.run(app, host="0.0.0.0", port=8808)

测试嵌入模型

import numpy as np


EMBEDDING_ENDPOINT = "http://localhost:11434/api/embeddings"

EMBEDDINGS_DIM = 768


def get_embedding(text):

    resp = requests.post(EMBEDDING_ENDPOINT,

                         json={"model": EMBEDDING_MODEL,

                               "prompt": text})

    return np.array(resp.json()["embedding"][:EMBEDDINGS_DIM], dtype=np.float16)

## Test with sample text

get_embedding("What is MinIO?")

引入管道概述

创建 MinIO 存储桶

使用 mc 命令或从 UI 执行此操作

  • custom-corpus - 存储所有文档

  • warehouse - 存储所有元数据、块和向量嵌入

!mc alias set 'myminio' 'http://localhost:9000' 'minioadmin' 'minioadmin'

!mc mb myminio/custom-corpus

!mc mb myminio/warehouse

创建从自定义语料库存储桶使用存储桶通知的 Webhook

import json

import gradio as gr

import requests

from fastapi import FastAPI, Request

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()


@app.post("/api/v1/document/notification")

async def receive_webhook(request: Request):

    json_data = await request.json()

    print(json.dumps(json_data, indent=2))


with gr.Blocks(gr.themes.Soft()) as demo:

    gr.Markdown("## RAG with MinIO")

    ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

    ch_interface.chatbot.show_label = False


demo.queue()

    


if __name__ == "__main__":

    nest_asyncio.apply()

    app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

    uvicorn.run(app, host="0.0.0.0", port=8808)

## Test with sample text

get_embedding("What is MinIO?")

创建 MinIO 事件通知并将其链接到 custom-corpus 存储桶

创建 Webhook 事件

在控制台中,转到 Events-> Add Event Destination -> Webhook

用以下值填写字段并点击保存

标识符 - doc-webhook

端点 - http://localhost:8808/api/v1/document/notification

单击顶部的 Restart MinIO (重新启动 MinIO) 时,将其设置为

(注意:您也可以为此使用 mc)

将 Webhook 事件链接到 custom-corpus bucket 事件

在控制台中,转到 Buckets (Administrator) -> custom-corpus -> Events

用以下值填写字段并点击保存

ARN - 从下拉列表中选择 doc-webhook

选择事件 - 选中 PUT 和 DELETE

(注意:您也可以为此使用 mc)

我们有了第一个 webhook 设置

现在通过添加和删除对象进行测试

从文档和区块中提取数据

我们将使用 Langchain 和 Unstructured 从 MinIO 读取对象,并将文档拆分为多个块

from langchain_text_splitters import RecursiveCharacterTextSplitter

from langchain_community.document_loaders import S3FileLoader


MINIO_ENDPOINT = "http://localhost:9000"

MINIO_ACCESS_KEY = "minioadmin"

MINIO_SECRET_KEY = "minioadmin"



# Split Text from a given document using chunk_size number of characters

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024,

                                               chunk_overlap=64,

                                               length_function=len)



def split_doc_by_chunks(bucket_name, object_key):

    loader = S3FileLoader(bucket_name,

                          object_key,

                          endpoint_url=MINIO_ENDPOINT,

                          aws_access_key_id=MINIO_ACCESS_KEY,

                          aws_secret_access_key=MINIO_SECRET_KEY)

    docs = loader.load()

    doc_splits = text_splitter.split_documents(docs)

    return doc_splits


# test the chunking

split_doc_by_chunks("custom-corpus""The-Enterprise-Object-Store-Feature-Set.pdf")

将分块逻辑添加到 Webhook

将块逻辑添加到 webhook 中,并将元数据和块保存到仓库存储桶中

import urllib.parse

import s3fs


METADATA_PREFIX = "metadata"


# Using s3fs to save and delete objects from MinIO

s3 = s3fs.S3FileSystem()



# Split the documents and save the metadata to warehouse bucket

def create_object_task(json_data):

    for record in json_data["Records"]:

        bucket_name = record["s3"]["bucket"]["name"]

        object_key = urllib.parse.unquote(record["s3"]["object"]["key"])

        print(record["s3"]["bucket"]["name"],

              record["s3"]["object"]["key"])


        doc_splits = split_doc_by_chunks(bucket_name, object_key)


        for i, chunk in enumerate(doc_splits):

            source = f"warehouse/{METADATA_PREFIX}/{bucket_name}/{object_key}/chunk_{i:05d}.json"

            with s3.open(source"w") as f:

                f.write(chunk.json())

    return "Task completed!"



def delete_object_task(json_data):

    for record in json_data["Records"]:

        bucket_name = record["s3"]["bucket"]["name"]

        object_key = urllib.parse.unquote(record["s3"]["object"]["key"])

        s3.delete(f"warehouse/{METADATA_PREFIX}/{bucket_name}/{object_key}", recursive=True)

    return "Task completed!"

使用新逻辑更新 FastAPI 服务器


import gradio as gr

import requests

from fastapi import FastAPI, Request, BackgroundTasks

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()


@app.post("/api/v1/document/notification")

async def receive_webhook(request: Request, background_tasks: BackgroundTasks):

json_data = await request.json()

if json_data["EventName"] == "s3:ObjectCreated:Put":

print("New object created!")

background_tasks.add_task(create_object_task, json_data)

if json_data["EventName"] == "s3:ObjectRemoved:Delete":

print("Object deleted!")

background_tasks.add_task(delete_object_task, json_data)

return {"status": "success"}


with gr.Blocks(gr.themes.Soft()) as demo:

gr.Markdown("## RAG with MinIO")

ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

ch_interface.chatbot.show_label = False


demo.queue()




if __name__ == "__main__":

nest_asyncio.apply()

app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

uvicorn.run(app, host="0.0.0.0", port=8808)

添加新的 Webhook 以处理文档元数据/块

现在我们有了第一个 webhook,下一步是获取所有带有元数据的块,生成嵌入并将其存储在向量数据库中

import json

import gradio as gr

import requests

from fastapi import FastAPI, Request, BackgroundTasks

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()




@app.post("/api/v1/metadata/notification")

async def receive_metadata_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    print(json.dumps(json_data, indent=2))


@app.post("/api/v1/document/notification")

async def receive_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    if json_data["EventName"] == "s3:ObjectCreated:Put":

        print("New object created!")

        background_tasks.add_task(create_object_task, json_data)

    if json_data["EventName"] == "s3:ObjectRemoved:Delete":

        print("Object deleted!")

        background_tasks.add_task(delete_object_task, json_data)

    return {"status""success"}


with gr.Blocks(gr.themes.Soft()) as demo:

    gr.Markdown("## RAG with MinIO")

    ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

    ch_interface.chatbot.show_label = False


demo.queue()

    


if __name__ == "__main__":

    nest_asyncio.apply()

    app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

    uvicorn.run(app, host="0.0.0.0", port=8808)

创建 MinIO 事件通知并将其链接到仓库存储桶

创建 Webhook 事件

在控制台中,转到 Events-> Add Event Destination -> Webhook

用以下值填写字段并点击保存

标识符 - metadata-webhook

端点 - http://localhost:8808/api/v1/metadata/notification

当出现提示时,单击顶部的重新启动 MinIO

(注意:您也可以为此使用 mc)

将 Webhook 事件链接到 custom-corpus bucket 事件

在控制台中,转到 Buckets (Administrator) -> warehouse -> Events

用以下值填写字段并点击保存

ARN - 从下拉列表中选择 metadata-webhook

前缀 - metadata/

后缀 - .json

选择事件 - 选中 PUT 和 DELETE

(注意:您也可以为此使用 mc)

我们有了第一个 webhook 设置

现在通过在自定义语料库中添加和删除对象进行测试,看看是否触发了此 Webhook

在 MinIO 中创建 LanceDB 向量数据库

现在我们已经有了基本的 webhook 工作,让我们在 MinIO 仓库桶中设置 lanceDB vector databse,我们将在其中保存所有嵌入和其他元数据字段

import os

import lancedb



# Set these environment variables for the lanceDB to connect to MinIO

os.environ["AWS_DEFAULT_REGION"] = "us-east-1"

os.environ["AWS_ACCESS_KEY_ID"] = MINIO_ACCESS_KEY

os.environ["AWS_SECRET_ACCESS_KEY"] = MINIO_SECRET_KEY

os.environ["AWS_ENDPOINT"] = MINIO_ENDPOINT

os.environ["ALLOW_HTTP"] = "True"



db = lancedb.connect("s3://warehouse/v-db/")

# list existing tables

db.table_names()
# Create a new table with pydantic schema

from lancedb.pydantic import LanceModel, Vector

import pyarrow as pa


DOCS_TABLE = "docs"

EMBEDDINGS_DIM = 768


table = None



class DocsModel(LanceModel):

    parent_source: str # Actual object/document source

    source: str # Chunk/Metadata source

    text: str # Chunked text

    vector: Vector(EMBEDDINGS_DIM, pa.float16()) # Vector to be stored



def get_or_create_table():

    global table

    if table is None and DOCS_TABLE not in list(db.table_names()):

        return db.create_table(DOCS_TABLE, schema=DocsModel)

    if table is None:

        table = db.open_table(DOCS_TABLE)

    return table


# Check if that worked

get_or_create_table()
# list existing tables

db.table_names()

将 lanceDB 中的存储/删除数据添加到 metadata-webhook

import multiprocessing


EMBEDDING_DOCUMENT_PREFIX = "search_document"


# Add queue that keeps the processed meteadata in memory

add_data_queue = multiprocessing.Queue()

delete_data_queue = multiprocessing.Queue()


def create_metadata_task(json_data):

    for record in json_data["Records"]:

        bucket_name = record["s3"]["bucket"]["name"]

        object_key = urllib.parse.unquote(record["s3"]["object"]["key"])

        print(bucket_name,

              object_key)

        with s3.open(f"{bucket_name}/{object_key}""r") as f:

            data = f.read()

            chunk_json = json.loads(data)

            embeddings = get_embedding(f"{EMBEDDING_DOCUMENT_PREFIX}: {chunk_json['page_content']}")

            add_data_queue.put({

                "text": chunk_json["page_content"],

                "parent_source": chunk_json.get("metadata""").get("source"""),

                "source": f"{bucket_name}/{object_key}",

                "vector": embeddings

            })

    return "Metadata Create Task Completed!"



def delete_metadata_task(json_data):

    for record in json_data["Records"]:

        bucket_name = record["s3"]["bucket"]["name"]

        object_key = urllib.parse.unquote(record["s3"]["object"]["key"])

        delete_data_queue.put(f"{bucket_name}/{object_key}")

    return "Metadata Delete Task completed!"

添加用于处理队列中数据的调度程序

from apscheduler.schedulers.background import BackgroundScheduler

import pandas as pd


def add_vector_job():

    data = []

    table = get_or_create_table()


    while not add_data_queue.empty():

        item = add_data_queue.get()

        data.append(item)


    if len(data) > 0:

        df = pd.DataFrame(data)

        table.add(df)

        table.compact_files()

        print(len(table.to_pandas()))



def delete_vector_job():

    table = get_or_create_table()

    source_data = []

    while not delete_data_queue.empty():

        item = delete_data_queue.get()

        source_data.append(item)

    if len(source_data) > 0:

        filter_data = ", ".join([f'"{d}"' for d in source_data])

        table.delete(f'source IN ({filter_data})')

        table.compact_files()

        table.cleanup_old_versions()

        print(len(table.to_pandas()))



scheduler = BackgroundScheduler()


scheduler.add_job(add_vector_job, 'interval', seconds=10)

scheduler.add_job(delete_vector_job, 'interval', seconds=10)

使用矢量嵌入更改更新 FastAPI

import json

import gradio as gr

import requests

from fastapi import FastAPI, Request, BackgroundTasks

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()



@app.on_event("startup")

async def startup_event():

    get_or_create_table()

    if not scheduler.running:

        scheduler.start()



@app.on_event("shutdown")

async def shutdown_event():

    scheduler.shutdown()


@app.post("/api/v1/metadata/notification")

async def receive_metadata_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    if json_data["EventName"] == "s3:ObjectCreated:Put":

        print("New Metadata created!")

        background_tasks.add_task(create_metadata_task, json_data)

    if json_data["EventName"] == "s3:ObjectRemoved:Delete":

        print("Metadata deleted!")

        background_tasks.add_task(delete_metadata_task, json_data)

    return {"status""success"}


@app.post("/api/v1/document/notification")

async def receive_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    if json_data["EventName"] == "s3:ObjectCreated:Put":

        print("New object created!")

        background_tasks.add_task(create_object_task, json_data)

    if json_data["EventName"] == "s3:ObjectRemoved:Delete":

        print("Object deleted!")

        background_tasks.add_task(delete_object_task, json_data)

    return {"status""success"}


with gr.Blocks(gr.themes.Soft()) as demo:

    gr.Markdown("## RAG with MinIO")

    ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

    ch_interface.chatbot.show_label = False

    ch_interface.chatbot.height = 600


demo.queue()

    


if __name__ == "__main__":

    nest_asyncio.apply()

    app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

    uvicorn.run(app, host="0.0.0.0", port=8808)

现在,我们已经有了引入管道,让我们集成最终的 RAG 管道。

添加矢量搜索功能

现在,我们已经将文档摄取到 lanceDB 中,让我们添加搜索功能

EMBEDDING_QUERY_PREFIX = "search_query"


def search(query, limit=5):

    query_embedding = get_embedding(f"{EMBEDDING_QUERY_PREFIX}: {query}")

    res = get_or_create_table().search(query_embedding).metric("cosine").limit(limit)

    return res
    
# Lets test to see if it works


res = search("What is MinIO Enterprise Object Store Lite?")

res.to_list()

提示LLM使用相关文件

RAG_PROMPT = """

DOCUMENT:

{documents}


QUESTION:

{user_question}


INSTRUCTIONS:

Answer in detail the user's QUESTION using the DOCUMENT text above.

Keep your answer ground in the facts of the DOCUMENT. Do not use sentence like "
The document states" citing the document.

If the DOCUMENT doesn't contain the facts to answer the QUESTION only Respond with "
Sorry! I Don't know"

"""
context_df = []


def llm_chat(user_question, history):

    history = history or []

    global context_df

    # Search for relevant document chunks

    res = search(user_question)

    documents = " ".join([d["text"].strip() for d in res.to_list()]) 

    # Pass the chunks to LLM for grounded response

    llm_resp = requests.post(LLM_ENDPOINT,

                             json={"model": LLM_MODEL,

                                   "messages": [

                                       {"role""user",

                                        "content": RAG_PROMPT.format(user_question=user_question, documents=documents)

                                        }

                                   ],

                                   "options": {

                                       # "temperature": 0,

                                       "top_p": 0.90,

                                   }},

                             stream=True)

    bot_response = "**AI:** "

    for resp in llm_resp.iter_lines():

        json_data = json.loads(resp)

        bot_response += json_data["message"]["content"]

        yield bot_response

    context_df = res.to_pandas()

    context_df = context_df.drop(columns=['source''vector'])



def clear_events():

    global context_df

    context_df = []

    return context_df

更新 FastAPI 聊天终端节点以使用 RAG

import json

import gradio as gr

import requests

from fastapi import FastAPI, Request, BackgroundTasks

from pydantic import BaseModel

import uvicorn

import nest_asyncio


app = FastAPI()



@app.on_event("startup")

async def startup_event():

    get_or_create_table()

    if not scheduler.running:

        scheduler.start()



@app.on_event("shutdown")

async def shutdown_event():

    scheduler.shutdown()


@app.post("/api/v1/metadata/notification")

async def receive_metadata_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    if json_data["EventName"] == "s3:ObjectCreated:Put":

        print("New Metadata created!")

        background_tasks.add_task(create_metadata_task, json_data)

    if json_data["EventName"] == "s3:ObjectRemoved:Delete":

        print("Metadata deleted!")

        background_tasks.add_task(delete_metadata_task, json_data)

    return {"status""success"}


@app.post("/api/v1/document/notification")

async def receive_webhook(request: Request, background_tasks: BackgroundTasks):

    json_data = await request.json()

    if json_data["EventName"] == "s3:ObjectCreated:Put":

        print("New object created!")

        background_tasks.add_task(create_object_task, json_data)

    if json_data["EventName"] == "s3:ObjectRemoved:Delete":

        print("Object deleted!")

        background_tasks.add_task(delete_object_task, json_data)

    return {"status""success"}


with gr.Blocks(gr.themes.Soft()) as demo:

    gr.Markdown("## RAG with MinIO")

    ch_interface = gr.ChatInterface(llm_chat, undo_btn=None, clear_btn="Clear")

    ch_interface.chatbot.show_label = False

    ch_interface.chatbot.height = 600

    gr.Markdown("### Context Supplied")

    context_dataframe = gr.DataFrame(headers=["parent_source""text""_distance"], wrap=True)

    ch_interface.clear_btn.click(clear_events, [], context_dataframe)


    @gr.on(ch_interface.output_components, inputs=[ch_interface.chatbot], outputs=[context_dataframe])

    def update_chat_context_df(text):

        global context_df

        if context_df is not None:

            return context_df

        return ""


demo.queue()

    


if __name__ == "__main__":

    nest_asyncio.apply()

    app = gr.mount_gradio_app(app, demo, path=CHAT_API_PATH)

    uvicorn.run(app, host="0.0.0.0", port=8808)

RAGs-R-Us

作为 MinIO 专注于 AI 集成的开发人员,我一直在探索如何将我们的工具无缝集成到现代 AI 架构中,以提高效率和可扩展性。在本文中,我们向您展示了如何将 MinIO 与检索增强生成 (RAG) 集成以构建聊天应用程序。这只是冰山一角,可以推动您为 RAG 和 MinIO 构建更多独特的用例。现在,您已经具备了执行此操作的构建块。让我们开始吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/44505.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【史上最全面ESP32教程】http通信

文章目录 前言HTTP协议是什么?HTTP协议的特点HTTP协议的常见应用 esp32 使用http通信通信流程基础使用HTTPClient 常用的函数函数介绍:void end(void);bool connected(void);void setReuse(bool reuse);void setUserAgent(const String& userAgent);…

简谈设计模式之建造者模式

建造者模式是一种创建型设计模式, 旨在将复杂对象的构建过程与其表示分离, 使同样的构建过程可以构建不同的表示. 建造者模式主要用于以下情况: 需要创建的对象非常复杂: 这个对象由多个部分组成, 且这些部分需要一步步地构建不同的表示: 通过相同的构建过程可以生成不同的表示…

skywalking-1-服务端安装

skywalking很优秀。 安装服务端 skywalking的服务端主要是aop服务,为了方便查看使用还需要安装ui。另外采集的数据我们肯定要存起来,这个数据库就直接用官方的banyandb。也就是aop、ui、banyandb都使用官方包。 我们的目的是快速使用和体验&#xff0c…

Xshell配置ssh免密码登录(密钥登陆)

文章目录 一、Xshell登陆步骤 一、Xshell登陆步骤 1.生成客户端的公钥私钥 2.生成公钥文件 3.生成私钥文件 4.将公钥传输进要登录的服务器中 5.修改公钥文件名为authorized_keys (authorized_keys是用于存储公钥的特殊文件,如果已经有了这份文件,可以在末尾追加) 6.连…

时序预测 | Matlab实现TCN-Transformer的时间序列预测

时序预测 | Matlab实现TCN-Transformer的时间序列预测 目录 时序预测 | Matlab实现TCN-Transformer的时间序列预测效果一览基本介绍程序设计 效果一览 基本介绍 基于TCN-Transformer模型的时间序列预测,可以用于做光伏发电功率预测,风速预测,…

apt curl wget git 命令行临时设置代理

一、linux 代理全局设置 export http_proxyhttp://192.168.6.9:8080/ export https_proxyhttps://192.168.6.9:8080/ 可以 export https_proxyhttp://192.168.6.9:8080/ 也可以缺点,有些工具不生效,每次要取消代理设置也麻烦 二、linux 命令行临时设置…

Qt框架中信号与槽机制的实现原理及在QGC中的具体应用场景

Qt 框架的信号与槽机制是其最强大和独特的功能之一。它使得对象之间的通信变得非常简单和直观,尤其在处理用户界面事件和其他异步操作时。以下是 Qt 信号与槽机制的实现原理及其在 QGroundControl (QGC) 中的具体应用场景。 信号与槽机制的实现原理 信号与槽的基本…

小白学webgl合集-Three.js加载器

THREE.TextureLoader: 用途: 加载单个图像文件并将其作为纹理应用到材质上。示例: const loader new THREE.DataTextureLoader(); loader.load(path/to/data.bin, function (texture) {const material new THREE.MeshBasicMaterial({ map: texture });const geometry new TH…

使用Spring Boot和Couchbase实现NoSQL数据库

使用Spring Boot和Couchbase实现NoSQL数据库 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 一、引言 NoSQL数据库越来越受到开发者的欢迎,特别是…

引用计数器(kref)

1、什么是引用计数器 如果我们写了一个字符驱动,当硬件设备插上时,系统会生成一个设备节点。用户在应用空间操作这个设备节点就可以操作设备。如果此时将硬件断开,驱动是不是就要立刻释放呢?如果立刻释放,应用程序是不…

docker-compose构建、运行多容器简介

(1)准备依赖的镜像,包括mariadb、jdk1.8、nginx,配置docker-compose.yml文件 services:mariadb:image: mariadbports:- "3314:3306"environment:- MARIADB_ROOT_PASSWORD123456volumes:- ./mysql:/var/lib/mysqlnetwor…

PLC数采网关在实际应用中有哪些效能?天拓四方

在工业自动化领域中,PLC扮演着至关重要的角色,它负责控制和监测生产线的各个环节。然而,随着工业4.0的推进和智能制造的快速发展,单纯依靠PLC进行现场控制已无法满足企业对数据集中管理、远程监控和智能分析的需求。因此&#xff…

Efficient Estimation of Word Representations in Vector Space论文笔记解读

基本信息 作者TomasMikolovdoi10.48550发表时间2013期刊ICLR网址http://arxiv.org/abs/1301.3781 研究背景 1. What’s known 既往研究已证实 前馈神经网络语言模型(NNLM) 循环神经网络语言模型(RNNLM) 2. What’s new 创新点 Word2vec有两种模型:CBOW和Skip-gr…

AJAX-个人版2.0

AJAX(Asynchronous Javascript And Xml) 传统请求及缺点 传统的请求都有哪些? 直接在浏览器地址栏上输入URL。点击超链接提交form表单使用JS代码发送请求 window.open(url)document.location.href urlwindow.location.href url… 传统请…

【对抗算法复现】CW

首先进行数据的预处理 transform transforms.Compose([transforms.ToTensor(), # 将图片转换为Tensor,自动将[0,255]映射到[0,1]transforms.Normalize((0.491,0.482 ,0.446), (0.247 ,0.243 ,0.261)) # 对张量进行标准化,使其范围为[-1,1] ])CW实现 …

“十四五”新型基础设施建设

一、基础设施 基础设施包括交通设施、邮电通讯设施、能源动力设施、供水排水设施、环保设施、防卫防灾安全设施等传统基础设施。这些设施共同构成了一个国家或地区正常运转的支柱,确保社会经济活动的正常进行。 交通设施:交通设施是基础设施的重要组成部…

AbyssFish单连通周期边界多孔结构2D软件

软件介绍 AbyssFish单连通周期边界多孔结构2D软件(以下简称软件)可用于生成具备周期性边界条件的单连通域多孔结构PNG图片,软件可设置生成模型的尺寸、孔隙率、孔隙尺寸、孔喉尺寸等参数,并且具备孔隙形态控制功能。 软件生成的…

视频号热门视频数据分析工具,快速查看同行数据创作者必看!

每天排行榜是帮助创作者查看同行数据为自己提供创作灵感,此外每天排行榜热门的视频收集了用户喜欢看的类型。 灵感分类了解当前社会关注的热点内容。该工具通过监测和分析视频号全网舆情,选取热门话题进行排序,形成一个每日热点排行榜。 这…

yolov8 分类太阳能板

原文:yolov8 分类太阳能板 - 知乎 (zhihu.com) 1、数据集 https://github.com/zae-bayern/elpv-dataset​github.com/zae-bayern/elpv-dataset 2、数据分析 import matplotlib.pyplot as plt import ostrain_dir = "./images" valid_extensions=(.jpg, .png, .j…

华为防火墙上的配置(1)

实验拓扑图 实验要求: 1、DMZ区内的服务器,生产区仅能在办公时间内(9:00-18:00)可以访问,办公区的设备全天可以访问 2、生产区不允许访问互联网,办公区和游客区允许访问互联网 3、办公区设备10.0.2.10不…