深度学习论文: LLaMA: Open and Efficient Foundation Language Models

深度学习论文: LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
PDF:https://arxiv.org/pdf/2302.13971.pdf
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

本文介绍了LLaMA,这是一系列基础而先进的语言模型,其参数规模横跨7亿至65亿不等,展现了强大的语言处理能力。研究表明,通过大规模公开数据的训练,LLaMA系列模型成功打破了对专有或受限数据集的依赖,达到了业界最前沿(SOTA)的性能水平。本研究的核心目标是通过显著增加训练中的token数量,开发出在不同推理场景下均能展现出卓越性能的语言模型。

LLaMA模型家族以其多样的参数配置,为语言模型领域带来了新的竞争力量。特别值得注意的是,即便是参数规模仅为GPT-3十分之一的LLaMA-13B版本,也在多数基准测试中超越了GPT-3,展现了其高效与强大。这一成果不仅提升了语言模型的性能边界,更旨在推动LLMs的普及,使得更多研究者能够在单个GPU的资源限制下,轻松访问并深入研究这些大型模型。
在这里插入图片描述
进一步地,在LLaMA系列中,65亿参数的顶级版本在性能上足以与Chinchilla、PaLM-540B等业界顶尖的大型语言模型相抗衡。尤为关键的是,LLaMA的训练完全基于公开数据,秉持开源精神,与许多依赖非公开或未详尽记录数据集的现有模型形成鲜明对比。尽管市场上已存在如OPT、GPT-NeoX、BLOOM和GLM等使用公开数据的模型,但它们在性能上尚未能与PaLM-62B或Chinchilla等顶尖模型相提并论。LLaMA的出现,无疑为语言模型领域注入了新的活力,也为未来的研究和应用开辟了更广阔的道路。

2 Approach

2-1 Pre-training Data

本训练数据集是精心构建的多元化数据集合,其数据来源广泛且覆盖多个领域,具体比例及处理方法如下:

英文CommonCrawl [67%]:
  • 精心预处理了2017年至2020年的五个CommonCrawl数据转储,采用CCNet管道(Wenzek等人,2020),确保数据质量。
  • 在行级别上进行去重操作,减少重复内容。
  • 利用fastText线性分类器识别并剔除非英文页面,保持语言一致性。
  • 通过n-gram语言模型过滤低质量内容,提升数据集质量。
  • 训练线性模型对页面进行分类,保留与维基百科参考相关的页面,丢弃其他低质量页面。
C4 [15%]:
  • 鉴于C4数据集在多样化预处理方面的优势,将其纳入以进一步提升模型性能。
  • 预处理包括去重和语言识别,确保数据纯净。
  • 质量过滤更多依赖于启发式规则,如标点符号、单词和句子数量等,筛选高质量内容。
Github [4.5%]:
  • 从Google BigQuery获取公开Github数据集,筛选符合Apache、BSD和MIT许可的开源项目。
  • 基于行长度和字母数字字符比例等启发式规则过滤低质量文件。
  • 使用正则表达式去除样板文字,如标题等,清理数据。
  • 在文件级别上进行精确匹配去重,确保数据唯一性。
维基百科 [4.5%]:
  • 添加2022年6月至8月期间的维基百科转储,涵盖20种使用拉丁或西里尔字母的语言。
  • 移除超链接、评论和其他格式化样板文字,使数据更纯净。
Gutenberg and Books3 [4.5%]:
  • 包含Gutenberg 项目和ThePile的Books3部分,提供公共领域书籍资源。
  • 在书籍级别上进行去重,移除内容重叠超过90%的书籍,避免数据冗余。
ArXiv [2.5%]:
  • 处理arXiv Latex文件,引入科学领域高质量数据。
  • 去除论文的引言部分和参考文献,专注于核心研究内容。
  • 去除.tex文件中的注释,并内联扩展用户编写的定义和宏,确保内容一致性和完整性。
Stack Exchange [2%]:
  • 引入Stack Exchange数据转储,包含多样化领域的高质量问题和答案。
  • 保留28个最大网站的数据,去除HTML标签,并按答案得分排序,优先使用高质量答案。
分词器:
  • 采用字节对编码(BPE)算法(Sennrich等人,2015),结合SentencePiece(Kudo和Richardson,2018)实现,对数据进行高效分词。
  • 将所有数字拆分成单个数字,并对未知UTF-8字符进行字节级分解,确保分词准确性和灵活性。

整个训练数据集分词后大约包含1.4T个token,其中大部分token在训练中仅使用一次,但计划对维基百科和图书领域数据进行大约两个周期的训练,以充分利用资源。
在这里插入图片描述

2-2 Architecture

基于近期在大语言模型领域的进展,提出的网络架构基于Transformer(Vaswani等,2017),并融入了多项优化改进,这些改进灵感来源于不同的先进模型如PaLM和GPTNeo。

预归一化 [GPT3灵感]

为了增强训练过程的稳定性,采用了预归一化策略,即在每个Transformer子层的输入处进行归一化,而非传统的输出处。这一优化借鉴了GPT3的做法,并采用了Zhang和Sennrich(2019)提出的RMSNorm归一化函数,以进一步提升性能。

SwiGLU激活函数 [PaLM启发]

为了提升模型的非线性表达能力和整体性能,将ReLU激活函数替换为SwiGLU激活函数。SwiGLU由Shazeer(2020)提出,并在PaLM等模型中展现出优势。在此基础上进行了微调,采用2^3/4d的维度设置,以适应我们的网络架构需求。

旋转位置嵌入 [GPTNeo创新]

为了更有效地处理序列中的位置信息,摒弃了传统的绝对位置嵌入,转而采用Su等人(2021)提出的旋转位置嵌入(RoPE)。这种嵌入方式在每个Transformer层的输入中动态地引入位置信息,有助于模型更好地理解和生成具有位置依赖性的文本。

通过上述优化,提出的网络架构在保持Transformer强大能力的同时,进一步提升了训练稳定性、非线性表达能力和对位置信息的处理能力,从而有望在大语言模型任务中取得更优的表现。
在这里插入图片描述

2-3 Optimizer

模型采用AdamW优化器训练,设置β1为0.9,β2为0.95,并使用余弦退火学习率计划,最终学习率是初始最大值的10%。同时使用权重衰减和梯度裁剪,使用2000步预热,并根据模型大小调整学习率和批量大小。

2-4 Efficient implementation

为了提升训练效率,采用了优化的因果多头注意力实现,减少了内存和时间消耗,并通过检查点技术减少了反向传播中的重复计算。同时实现了模型和序列并行性,以及尽可能重叠激活计算和GPU间的通信。

3 Main results

Common Sense Reasoning

在这里插入图片描述

Closed-book Question Answering

在这里插入图片描述
在这里插入图片描述

Reading Comprehension

在这里插入图片描述

Mathematical reasoning

在这里插入图片描述

Code generation

在这里插入图片描述

Massive Multitask Language Understanding

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/44189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据开源 | Magic Data大模型高质量十万轮对话数据集

能够自然的与人类进行聊天交谈,是现今的大语言模型 (LLM) 区别于传统语言模型的重要能力之一,近日OpenAI推出的GPT-4o给我们展示了这样的可能性。 对话于人类来说是与生俱来的,但构建具备对话能力的大模型是一项不小的挑战,收集高…

基于Android平台开发,仿头条新闻app

1. 项目模块功能思维导图 2. 项目涉及到的技术点 数据来源:聚合数据API使用okhttp网络请求框架获取api数据使用gson库解析json数据使用RecyclerViewadapter实现新闻列表使用SQLite数据库实现用户登录,注册,浏览历史记录使用SharedPreference…

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验17 开放最短路径优先OSPF

一、实验目的 1.验证OSPF协议的作用; 二、实验要求 1.使用Cisco Packet Tracer仿真平台; 2.观看B站湖科大教书匠仿真实验视频,完成对应实验。 三、实验内容 1.构建网络拓扑; 2.验证OSPF协议的作用。 四、实验步骤 1.构建网…

AutoMQ 与蚂蚁数科达成战略合作

近期,AutoMQ 与蚂蚁数科正式签署战略合作协议,将和蚂蚁数科云原生 PaaS 平台 SOFAStack 在产品研发、生态集成、市场合作、技术社区影响力等多方面开展深度合作。 AutoMQ 是业内领先的消息和流存储服务提供商,基于云原生基础设施重新设计了 …

解密 AI 客服:LangChain+ChatGPT 打造智能客服新时代

你需要了解 ChatGPT ChatGPT 是 OpenAI 开发的一种基于人工智能技术的自然语言处理模型。它可以通过对大量文本数据进行训练,自动生成高质量的回答和对话。ChatGPT 具有高效、准确、自然的特点,可以帮助人们更加高效地处理信息和交流。 ChatGPT 有很多…

el-from中校验,如果某一项需要另一项填写才能校验

使用validateField <el-form:model"params":rules"rules":scroll-to-error"true"ref"refrom"v-else><el-form-item label"用户姓名" prop"name"><el-input placeholder"请输入用户姓名"…

图片海报怎么做成二维码展示?二维码分享图片的制作技巧

怎么把图片的宣传海报做成二维码呢&#xff1f;在做活动或者产品宣传时&#xff0c;都会制作精美的图片海报&#xff0c;除了打印传单或者制作展板的方式来展示外&#xff0c;将海报图片生成二维码&#xff0c;通过分享二维码来实现图片海报的快速传播&#xff0c;能够有效提升…

大话光学原理:2.最短时间原理、“魔法石”与彩虹

一、最短时间原理 1662年左右&#xff0c;费马在一张信纸的边角&#xff0c;用他那著名的潦草笔迹&#xff0c;随意地写下了一行字&#xff1a;“光在两点间选择的路&#xff0c;总是耗时最少的。”这句话&#xff0c;简单而深邃&#xff0c;像是一颗悄然种下的种子&#xff0c…

After Detailer让图像自动修复

After Detailer&#xff08;简称adetailer&#xff09;是一个Stable Diffusion的自动Web-UI扩展&#xff0c;它能够自动化修复图像中的不完整部分&#xff0c;例如模糊的人脸等常见问题。在这篇文章中&#xff0c;你将了解它的工作原理、如何使用它&#xff0c;以及一些常见的使…

品牌策划学习资源全攻略:从入门到精通的推荐清单!

这里再分享一些网站书籍和杂志给大家。 TOPYS创意内容平台&#xff1a; 专注于创意内容分享&#xff0c;涵盖广告、设计、艺术等多个领域&#xff0c;是广告设计人寻找创意灵感的好去处。 Dribbble&#xff1a; 设计师社区&#xff0c;用户可以浏览到全球设计师的优秀作品&…

使用webrtc-streamer查看rtsp实时视频

1.下载webrtc-streamer 2.解压运行webrtc-streamer.exe 在浏览器访问127.0.0.1:8000&#xff0c;点击窗口可以看到本机上各窗口实时状态&#xff0c;点击摄像头可以显示摄像头画面。 5.安装phpstudy&#xff0c;并建立网站。&#xff08;具体过程自己网上搜&#xff09; 6.打开…

【探索Linux】P.38(传输层 —— TCP协议通信连接管理机制简介 | TCP连接状态转换)

阅读导航 引言一、TCP协议通信连接管理机制二、连接状态转换1. TCP状态转换图2. 状态转换过程3. 理解TIME_WAIT状态&#xff08;1&#xff09;目的和作用&#xff08;2&#xff09;状态转换&#xff08;3&#xff09;特殊情况&#xff08;4&#xff09;影响和优化 4. 理解 CLOS…

多模态大模型时代下的文档图像智能分析与处理_多模态ocr

0. 前言1. 人工智能发展历程 1.1 传统机器学习1.2 深度学习1.3 多模态大模型时代 2. CCIG 文档图像智能分析与处理论坛 2.1 文档图像智能分析与处理的重要性和挑战2.2 文档图像智能分析与处理高峰论坛2.3 走进合合信息 3. 文档图像智能分析与处理 3.1 文档图像分析与预处理3.2 …

牛市中途深度调整,一览下半场值得关注的 Solana 生态五大潜力项目

近期有关加密货币的利空消息让市场行情一度陷入了恐慌之中&#xff0c;短期利空的落地也将伴随着接下来市场的蓄势。对于投资者来说&#xff0c;现在布局超跌潜力项目不失为一个不错的机会。作为本轮牛市值得关注的两大生态&#xff0c;Solana和TON的快速发展和吸金效应&#x…

微米级触觉感知的紧凑视触觉机器人皮肤

视触觉皮肤&#xff08;VTS&#xff09;分为涂层型、标记型和热致变色型。涂层的耐磨性和空间分辨率是涂层型VTS的核心问题。近期&#xff0c;北京邮电大学方斌教授联合中国地质大学&#xff08;北京&#xff09;杨义勇教授&#xff0c;在传感器领域Q1期刊IEEE Sensors Journal…

存储相关基本知识:oss\s3\文件存储\块存储\

存储 常见的存储格式 文件存储会以文件和文件夹的层次结构来整理和呈现数据&#xff1b;块存储会将数据拆分到任意划分且大小相同的卷中;对象存储会管理数据并将其链接至关联的元数据。 DAS和SAN是基于物理块的存储方式&#xff0c;而NAS是基于文件的存储方式。 在DAS和SAN中…

Conformal low power-2.电源感知等效性检查

电源感知等效性检查 ■ 第24页&#xff1a;电源感知等效性检查概述 ■ 第24页&#xff1a;启动低功耗&#xff08;等效性检查&#xff09;软件 ■ 第25页&#xff1a;电源感知等效性检查流程 ■ 第28页&#xff1a;电源感知等效性检查示例Do文件 电源感知等效性检查概述…

亚马逊关键词优化全攻略:自养号测评让你的产品跃居首页

常常听到亚马逊运营吐槽&#xff1a; 为啥我的产品就是上不了首页呢&#xff1f; 我的关键词要怎么优化才能排名靠前啊&#xff1f; 的确&#xff0c;每天都有无数个卖家在想方设法让自己的产品排到首页&#xff0c;所以产品的竞争激烈程度不言而喻。 我们在亚马逊运营中&a…

昇思MindSpore学习笔记6-03计算机视觉--ResNet50图像分类

摘要&#xff1a; 记录MindSpore AI框架使用ResNet50神经网络模型&#xff0c;选择Bottleneck残差网络结构对CIFAR-10数据集进行分类的过程、步骤和方法。包括环境准备、下载数据集、数据集加载和预处理、构建模型、模型训练、模型测试等。 一、概念 1.图像分类 最基础的计算…

用6000万茅台案,了解什么是外挂?

近日&#xff0c;一起涉案金额高达6000余万元的案件出现在人们视野中。此前浙江丽水云和县公安局侦破了一起非法利用软件抢购电商平台茅台酒案。 据了解&#xff0c;犯罪嫌疑人以非法牟利为目的&#xff0c;开发了抢购软件&#xff0c;以有偿原价抢购电商平台飞天茅台酒为噱头&…