算法学习笔记(8)-动态规划基础篇

目录

基础内容:

动态规划:

动态规划理解的问题引入:

解析:(暴力回溯)

代码示例:

暴力搜索:

Dfs代码示例:(搜索)

暴力递归产生的递归树:

记忆化搜索:

代码示例:

动态规划:

代码示例:(动态规划,从最小子问题开始)

执行过程(动态规划):

解析:(动态规划)

空间优化:

代码示例:

解析:


基础内容:

什么是动态规划,动态规划作为一种手段可以解决哪些问题,动态规划的分类,以及具体的分类可以解决的具体问题的分类。

动态规划:

是一个重要的算法范式,它将一个问题分解成一系列更小的子问题,并通过存储子问题解避免重复计算,从而大幅度提升时间效率。

动态规划理解的问题引入:

通过爬楼梯的案例来引入这个问题,给定一个共有n阶的楼梯,你每步可以上1阶或者2阶,请问有多少种方案可以爬到楼顶。

解析:(暴力回溯)

本题目的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上一阶或者二阶,每当达到楼梯顶部时就将方案数量加1,当越过楼梯顶部就将其剪枝。

代码示例

# python代码示例
def backrack(choices,state,n,res) :if state == n :res[0] += 1 for choice in choices :if state + choice > n :continuebackrack(choices,state+choice,n,res)
def climbing_stairs_backrack(n) :choices = [1,2]state = 0res = [0]backrack(choices,state,n,res)return res[0]
n = int(input())
print(climbing_stairs_backrack(n))
// c++代码示例
void backrack(vector<int> &choices, int state, int n, vector<int> &res)
{if (state == n ){res[0]++ ;}for (auto &choice : choices){if (state + choice > n){continue ;}backrack(choices, state + choice, n, res)}
}int climbingStairsBackrack(int n)
{    vector<int> choices = {1 , 2 } ;int state = 0 ;vector<int> res = [0] ;backrack(choices, state, n, res) ;return res[0] ;
}

暴力搜索:

回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。

我们可以尝试从问题分解的角度分析这道题。设爬到第i阶共有dp[i]中方案,那么dp[i]就是原问题,其子问题包括:

dp[i-1],dp[i-2],dp[1],dp[2]

由于每轮只能上1阶或者2阶,因此当我们站在第i阶楼梯上时,上一轮只可能站在第i-1或者i-2台阶上。换句话说,我们只能从第i-1阶或者第i-2阶迈向第i阶。

由此便可以得出一个重要的推论:爬到第i-1阶的方案加上爬到第i-2阶的方案数就等于爬到第i阶的方案数。公式如下:

dp[i] = dp[i-1] + dp[i-2]

这就意味着,爬楼问题中存在着递推的关系,原问题可由子问题的解构建来得到解决

Dfs代码示例:(搜索)

# python 代码示例
def dfs(i : int) -> int :if i == 1 or i == 2 :return icount = dfs(i - 1) + dfs(i - 2)return count
def climbing_stairs_dfs(n : int) -> int :retunr dfs(n)
// c++ 代码示例
int dfs(int i)
{if (i == 1 || i == 2){return i ;}int count = dfs(i - 1) + dfs(i - 2);return count ;
}
int climbingStairsDFS(int n)
{retunr dfs(n) ;
}

暴力递归产生的递归树

解决上述递归树中的重复问题,采用记忆化搜索的方式,可以把大量重复构建的相同子树进行去掉,从而达到提高计算效率。(重叠子问题

记忆化搜索:

将所有重叠的子问题只进行一遍计算,需要声明一个数组nem来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。

  1. 当首次计算dp[i]时,将其记录在nem[i],便于后续的使用
  2. 当再次计算dp[i]时,直接在nem[i]中进行获取结果,避免重复子问题的计算。

代码示例:

# python 代码示例
def dfs(i : int, mem : list[int]) -> int :if i == 1 or i == 2 :return iif mem[i] != -1 :return mem[i]count = dfs(i - 1, mem) + dfs(i - 2, mem)# 记录dfs(i)mem[i] = countreturn count
def climbing_stairs_dfs_mem(n : int) -> int :mem = [-1] * (n + 1)return dfs(n, mem)
// c++ 代码示例
int dfs(int i, vector<int> &mem)
{if (i == 1 || i == 2){return i ;}if (mem != -1){return mem[i] ;}int count = dfs(i - 1, mem) + dfs(i - 2, mem) ;mem[i] = count ;return count ;
}
int climbingStairsDFSMem(int n)
{vector<int> mem(n + 1, -1) ;return dfs(n, mem) ; 
}

经过记忆化处理后,所有重叠的子问题都只计算一次,时间复杂度优化到了O(n)

动态规划:

记忆化搜索是一种”从顶至低”的方法,我们从原问题(根节点)开始,递归地将较大子问题分解成较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯逐层收集子问题的解,构建出原问题的解。

与之相反,动态规划是一种“从底至顶”方法:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。

由于动态规划不包含回溯过程,因此只需要使用循环迭代实现,无须使用递归。

代码示例:(动态规划,从最小子问题开始)

# python 代码示例
def clibing_stairs_dp(n) :if n == 1 or n == 2 :return ndp = [0] * (n + 1)dp[1], dp[2] = 1, 2for i in range(3,n + 1) :dp[i] = dp[i-1] + dp[i- 2]return dp[n]
// c++ 代码示例int climbingStairsDP(int n) 
{if (n == 1 || n == 2){retunr n ;}vector<int> dp(n + 1, -1) ;dp[1] = 1 ;    dp[2] = 2 ;for (int i = 3 ; i <= n ; i++){dp[i] = dp[i - 1] + dp[i- 2] ;}return dp[n] ;
}

执行过程(动态规划):

解析:(动态规划)

相似于回溯算法,动态规划也使用“状态”概念来表示问题求解的特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例:爬楼梯问题的状态定义为当前所在楼梯的阶数i

根据以上内容,我们可以总结为动态术语的常用术语:

  1. 将数组dp称为{dp表},dp[i]表示状态i对应子问题的解
  2. 将最小子问题对应的状态,(第一阶和第二阶楼梯)称为初始状态
  3. 将递推公式dp[i] = dp[i-1] + dp[i-2]称为状态方程

空间优化:

dp[i] 只跟 dp[i-1] 和 dp[i-2] 有关

无须使用一个数组来存储所有子问题的解,只需要两个变量滚动前进即可。

代码示例:

# python 代码示例
def clibing_stairs_dp_comp(n) :if n == 1 or n == 2 :return na, b = 1, 2for _ in range(3, n + 1) :a, b = b , a + breturn b
// c++ 代码示例
int climbingStairsComp(int n) 
{if (n == 1 || n == 2){return n ;}int a = 1 , b = 2 ;for (int i = 3 ; i <= n ; i++){int temp = b ;b = a + b ;a = temp ;}return b ;
}

解析:

省去了数组dp所占用的空间,空间复杂度由O(n)降为O(1)

在动态规划问题中,当前状态仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。这种空间优化技巧被称为“滚动变量”或“滚动数组”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/43106.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab仿真 信道(上)

&#xff08;内容源自详解MATLAB&#xff0f;SIMULINK 通信系统建模与仿真 刘学勇编著第四章内容&#xff0c;有兴趣的读者请阅读原书&#xff09; 1.加性高斯白噪声信道&#xff08;AWGN &#xff09; clear all t0:0.001:10; xsin(2*pi*t);%原始信号 snr20;%设定加性白噪…

CSS技巧:清除浏览器默认样式,让你的页面全由你做主!

莫名其妙的的问题哪里来? 你有没有过写了半天样式&#xff0c;却发现总有些与你想要的效果不同的地方&#xff1a;input带个黑框框&#xff0c;list 的小圈圈&#xff0c;锚点的文字颜色&#xff0c;莫名其妙多出来的一两个像素的距离。。 回到20年前&#xff0c;我刚刚接触…

HBuilder X 小白日记03-用css制作简单的交互动画

:hover选择器&#xff0c;用于选择鼠标指针浮动在上面的元素。 :hover选择器可用于所有元素&#xff0c;不只是链接 :link选择器 设置指向未被访问页面的链接的样式 :visited选择器 用于设置指向已被访问的页面的链接 :active选择器 用于活动链接

更加优雅的下载文件 --- http header Content-Disposition 学习

更加优雅的下载文件 --- http header Content-Disposition 学习 在响应头中在请求头中a 标签的 download 属性小结 Content-Disposition 在响应头中&#xff0c;告诉浏览器如何处理返回的内容&#xff0c;在表单提交中&#xff0c;说明表单字段信息。 在响应头中 用在响应头中…

DBA 数据库管理

数据库&#xff1a;存储数据的仓库 数据库服务软件&#xff1a; 关系型数据库&#xff1a; 存在硬盘 &#xff0c;制作表格的 数据库的参数 [rootmysql50 ~]# cat /etc/my.cnf.d/mysql-server.cnf 主配置文件 [mysqld] datadir/var/lib/mysql 存放数据库目录…

【小鸡案例】表单focus和blur事件用法

input中有2个属性&#xff0c;一个是focus获取焦点&#xff0c;一个是blur失去焦点。获取焦点就是我们点击输入框时输入框被选中&#xff1b;失去焦点即点击输入框以外的区域&#xff0c;今天就用这两种属性做一个点击输入框的动画效果。 先写个输入框&#xff0c;代码如下&am…

GitLab介绍,以及add an SSH key

GitLab GitLab 是一个用于仓库管理系统的开源项目&#xff0c;现今并在国内外大中型互联网公司广泛使用。 git,gitlab,github区别 git 是一种基于命令的版本控制系统&#xff0c;全命令操作&#xff0c;没有可视化界面&#xff1b; gitlab 是一个基于git实现的在线代码仓库…

GEE代码实例教程详解:长时间序列NDVI分析

简介 本篇博客将介绍如何使用Google Earth Engine (GEE) 对长时间序列的Landsat数据进行归一化植被指数&#xff08;NDVI&#xff09;分析。通过此分析&#xff0c;可以监测和评估1982年至2024年间的植被变化趋势。 背景知识 Landsat数据集 Landsat是美国地质调查局和美国航…

Spring Security的Filter

Spring Security 是一个功能强大的、高度可定制的身份验证和访问控制框架&#xff0c;它为基于 Java 的应用程序提供了全面的安全解决方案。在 Spring Security 中&#xff0c;过滤器&#xff08;Filter&#xff09;扮演着非常重要的角色&#xff0c;它们被用来拦截请求并应用安…

React@16.x(52)Redux@4.x(1)- 核心概念

目录 1&#xff0c;MVC2&#xff0c;前端MVC的困难3&#xff0c;Flux4&#xff0c;Redux 1&#xff0c;MVC 是一个解决方案&#xff0c;用于降低 UI 和数据关联的复杂度。 在早期前后端未做分离时&#xff0c;服务端会响应一个完整的HTML&#xff0c;包含页面需要的所有数据。而…

Spring的AOP进阶。(AOP的通知类型、通知顺序、切入点表达式和连接点。)

3. AOP进阶 AOP的基础知识学习完之后&#xff0c;下面我们对AOP当中的各个细节进行详细的学习。主要分为4个部分&#xff1a; 通知类型通知顺序切入点表达式连接点 我们先来学习第一部分通知类型。 3.1 通知类型 在入门程序当中&#xff0c;我们已经使用了一种功能最为强大…

C++ this指针的作用

this指针的作用 隐式存在&#xff1a;在每个非静态成员函数中&#xff0c;this 指针隐式存在&#xff0c;无需声明。指向对象实例&#xff1a; this 指针指向调用成员函数的对象。成员访问&#xff1a;成员函数通过 t his 指针隐式访问对象的数据成员和函数成员。类型&#xf…

武汉免费 【FPGA实战训练】 Vivado入门与设计师资课程

一&#xff0e;背景介绍 当今高度数字化和智能化的工业领域&#xff0c;对高效、灵活且可靠的技术解决方案的需求日益迫切。随着工业 4.0 时代的到来&#xff0c;工业生产过程正经历着前所未有的变革&#xff0c;从传统的机械化、自动化逐步迈向智能化和信息化。在这一背景下&…

BP神经网络的实践经验

目录 一、BP神经网络基础知识 1.BP神经网络 2.隐含层选取 3.激活函数 4.正向传递 5.反向传播 6.不拟合与过拟合 二、BP神经网络设计流程 1.数据处理 2.网络搭建 3.网络运行过程 三、BP神经网络优缺点与改进方案 1.BP神经网络的优缺点 2.改进方案 一、BP神经网络基…

小山菌_代码随想录算法训练营第四十二天| 121. 买卖股票的最佳时机 、

121. 买卖股票的最佳时机 文档讲解&#xff1a;代码随想录. 买卖股票的最佳时机 视频讲解&#xff1a;动态规划之 LeetCode&#xff1a;121.买卖股票的最佳时机1 状态&#xff1a;已完成 代码实现 class Solution { public:int maxProfit(vector<int>& prices) {// …

windows obdc配置

进入控制面板&#xff1a; 进入管理工具&#xff1a;

java解析请求的字符串参数Content-Disposition: form-data;和拼接的键值对

项目场景&#xff1a; 获取到http请求的参数&#xff0c;已经被字符串接收了&#xff0c;需求是需要从字符串中解析出来。 一种情况是&#xff1a;Content-Disposition: form-data; name"userCode" 另一种是&#xff1a;key1value1&key2value2&key3value3…

代码随想录算法训练营第六十二天 | 108. 冗余连接、109. 冗余连接II、复习

108. 冗余连接 题目链接&#xff1a;https://kamacoder.com/problempage.php?pid1181 文档讲解&#xff1a;https://www.programmercarl.com/kamacoder/0108.%E5%86%97%E4%BD%99%E8%BF… 思路 从前向后遍历每一条边&#xff08;因为优先让前面的边连上&#xff09;&#xff0…

Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph&#xff0c;以下为代码的实现。 Basic ReAct Agent(manual action) import openai import re import httpx import os from dotenv import load_dotenv, find_dotenvOPENAI_API_KEY os.getenv(OPEN…

java 实现人脸特征提取

1. 安装必要的库 确保你已经安装了JPEG库、BLAS和LAPACK库。在Ubuntu或Debian系统上&#xff0c;可以使用以下命令安装&#xff1a; sudo apt-get update sudo apt-get install libjpeg-dev libblas-dev liblapack-dev 在CentOS或Fedora系统上&#xff0c;可以使用以下命令安…