昇思25天学习打卡营第10天|ShuffleNet图像分类

ShuffleNet网络结构

ShuffleNet是一种专为移动设备设计的、计算效率极高的卷积神经网络(CNN)架构。其网络结构的设计主要围绕减少计算复杂度和提高模型效率展开,通过引入逐点分组卷积(Pointwise Group Convolution)和通道洗牌(Channel Shuffle)两种新技术,实现了在保持精度的同时大幅降低计算成本。

逐点分组卷积(Pointwise Group Convolution):

逐点分组卷积是ShuffleNet中用于减少1x1卷积计算复杂度的方法。它将输入特征图的通道分成多个组,每个组内的通道独立进行1x1卷积,从而显著降低了计算量。
在这里插入图片描述

然而,这种方法可能导致通道间的信息无法充分交流,影响模型的表达能力。可能会降低网络的特征提取能力

通道洗牌(Channel Shuffle):

为了解决逐点分组卷积带来的通道间信息交流不足的问题,ShuffleNet引入了通道洗牌操作。通过均匀地打乱不同分组中的通道,使得每个分组都能获得来自其他分组的信息,从而增强模型的特征提取能力。

在这里插入图片描述
在这里插入图片描述

ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), ©的更改:

  1. 将开始和最后的 1×1卷积模块(降维、升维)改成Point Wise Group Convolution

  2. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle

  3. 降采样模块中, 3×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为23×3平均池化,并把相加改成拼接。
    在这里插入图片描述
    ShuffleV1Block

class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x

ShuffleNet的基本单元是在残差单元(residual block)的基础上改进而成的,具体结构如下:

1x1分组卷积:首先,输入特征图通过一个1x1的分组卷积进行降维,减少通道数。
通道洗牌:紧接着,对分组卷积的输出进行通道洗牌操作,以实现不同分组之间的信息交流。
3x3深度可分离卷积:然后,使用3x3的深度可分离卷积(depthwise separable convolution)进行特征提取。这里的3x3卷积是瓶颈层(bottleneck),用于降低计算量。
1x1分组卷积(可选):最后,根据需要,可以通过另一个1x1的分组卷积将通道数恢复到与输入相同或更大的数量。
短路连接:在基本单元中,还包含短路连接(shortcut),用于将输入特征图直接加到输出特征图上,以保留原始信息并帮助梯度回传。
在这里插入图片描述

ShuffleNet网络结构如上图所示,以输入图像 224×224 ,组数3(g = 3)为例,首先通过数量24,卷积核大小为 3×3stride2的卷积层,输出特征图大小为 112×112 ,channel为24;然后通过stride为2的最大池化层,输出特征图大小为 56×56channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图©),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为 1×1×960 ,再经过全连接层softmax,得到分类概率

ShuffleNetV1

class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x

设置model_size="2.0x",定义模型的复杂度。

 net = ShuffleNetV1(model_size="2.0x", n_class=10)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/43082.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AutoX.js从某音分享链接解析出视频ID

背景 从某音分享的链接中解析出数字的videoID,用来做评论Intent跳转 思路 基本所有的短链接都是302跳转或者js跳转,熟悉http协议都知道,当状态码为302,从headers中提取Location即刻获得视频的原链接 链接中就带有videoId 要注意…

【大模型LLM面试合集】大语言模型基础_Word2Vec

Word2Vec 文章来源:Word2Vec详解 - 知乎 (zhihu.com) 1.Word2Vec概述 Word2Vec是google在2013年推出的一个NLP工具,它的特点是能够将单词转化为向量来表示,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。 …

Java之父James Gosling宣布正式退休 创造无数人的饭碗

编程语言Java的创始人,被誉为“Java之父”的James Gosling,近日在社交媒体上宣布了自己正式退休的消息。Gosling表示:“我终于退休了。做了这么多年的软件工程师,现在是时候享受人生了。”他透露,在亚马逊的过去7年是非…

提高LabVIEW软件通用性的方法

提高LabVIEW软件通用性的方法 在使用LabVIEW开发软件时,提高软件的通用性非常重要。通用性意味着软件可以在不同的应用场景中使用,具备高度的适应性和灵活性,从而提高软件的价值和用户满意度。以下从多个角度详细探讨如何提高LabVIEW软件的通…

太实用了吧?手把手教你华为eNSP模拟器桥接真实网络!

号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部 晚上好,我的网工朋友。 今天聊聊eNSP桥接正式网络,就是把eNSP桥接进真实的网络,利用我们的物理网卡通过实体路…

Unity Text Mesh Pro 中英文混编自动换行问题

问题描述 使用TextMeshPro 输入中英文时,在一行内 输入中英文,当英文部分超过第一行剩余位置时,整个英文部分都会自动换行 问题截图: 期待截图: 问题说明 因为 TextMeshPro识别中文后会带换行符。 解决方案 修改…

人员定位系统的功能,你知道多少呢?

在此前的文章中,说到了人员定位系统用于化工厂定位这一用途来完善工厂管理,但同时,基于人员定位系统的强大功能,该系统的应用范围也要宽范的多,那么,本篇文章就来为大家介绍一下吧。 人员定位系统的功能简介…

C++、QT企业管理系统

目录 一、项目介绍 二、项目展示 三、源码获取 一、项目介绍 人事端: 1、【产品中心】产品案列、新闻动态的发布; 2、【员工管理】新增、修改、删除、搜索功能;合同以图片的方式上传 3、【考勤总览】根据日期显示所有员工上班、下班时间…

[每周一更]-(第104期):Go中使用Makefile的经验

文章目录 1. 项目结构2. Makefile的基础知识什么是 Makefile 3. Go项目的Makefile示例4. 详细解释每个Makefile目标5. 使用Makefile执行常见任务 在Go项目中,使用Makefile可以简化和自动化常见的开发和部署任务,如编译、测试、格式化和清理。深入认识及实…

SRS流媒体服务器概述

SRS/5.0(Bee) is a simple, high efficiency and realtime video server, supports RTMP, WebRTC, HLS, HTTP-FLV, SRT, MPEG-DASH and GB28181. 翻译:SRS/5.0(Bee)是一款简洁、高效、实时的视频服务器,支持RTMP、WebRTC、HLS、HTTP-FLV、SRT、MPEG-DAS…

Ubuntu开源软件LibreOffice将Excel多表转PDF多目录示例

一、实现的起因: Windows平台下,常见的WPS办公自动化套件中电子表格软件,其中具备将Excel工作表中数据转为PDF文档表格的功能。现在进一步的需求是:像PDF标准的电子书那样,具备一本书的目录结构或章节结构&#xff0c…

怎么才能选到好的猫咪主食冻干?公认顶尖优秀主食冻干总结

如今,主食冻干市场纷繁多样,质量水平却大相径庭。部分品牌盲目追求高营养值和利润增长,却忽略了猫咪健康饮食的本质需求,导致市场上充斥着以次充好、虚假标注日期等不法行为。更有甚者,部分产品未经权威第三方检测便匆…

Docker——简介、安装(Ubuntu22.04)

1、简介 Docker 是一个开源的容器化平台,旨在简化应用程序的开发、交付和运行。它通过将应用程序及其所有依赖项打包到一个称为容器的标准化单元中,使应用程序能够在任何环境中一致地运行。Docker 解决了“在我的机器上能运行”的问题,使开发…

【AI大模型】跌倒监控与健康:技术实践及如何改变未来

文章目录 1. **背景与意义**2. **关键技术与方法**2.1 传感器数据融合2.2 深度学习模型2.3 行为模式识别2.4 预测与预防 3. **应用场景**3.1 老年人跌倒预警3.2 康复患者监测3.3 高风险职业防护 4. **实践案例**案例1:某老年社区的跌倒预警系统案例2:康复…

Redis存储原理与数据模型

Redis存储结构 存储转换 redis-value编码 string int:字符串长度小于等于20切能转成整数raw:字符串长度大于44embstr:字符串长度小于等于44 list quicklist(双向链表)ziplist(压缩链表) hash …

意得辑ABSJU202优惠15%啦,新用户注册直减哦

不得不说,还得是意得辑,钱不白花,润色的挺好~ 第一篇SCI终于成功见刊!!! 都来接accept!!!谢谢accept小狗,接accept 求求accept小狗,真的想要双证毕…

OS-HACKNOS-2.1

确定靶机IP地址 扫描靶机开放端口信息 目录扫描 访问后发现个邮箱地址 尝试爆破二级目录 确定为wordpress站 利用wpscan进行漏洞扫描 #扫描所有插件 wpscan --url http://192.168.0.2/tsweb -e ap 发现存在漏洞插件 cat /usr/share/exploitdb/exploits/php/webapps/46537.txt…

location匹配和rewrite重定向

目录 location 匹配 location匹配的分类和优先级 优先级细分 实际网站中的使用规则 1.用精确匹配来实现网站的首页 访问网站的首页 ( /) 2.用正则匹配来实现静态请求的页面和图片 匹配静态页面 访问图片或者指定的后缀名 3.用一般匹配转发.php…

树状数组

树状数组 树状数组的核心思想:分治。将数组以二叉树的形式进行维护区间之和。 设 a a a为原数组, t r e e tree tree为树状数组。 t r e e tree tree数组用于存储树上该结点下严格直连的子节点之和(例: t [ 1 ] a [ 1 ] , t [ 2 ] t [ 1 …

使用C++实现ATM系统,谈谈思路及代码实现

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…