科大讯飞-群聊对话角色要素提取:不微调范式模拟官网评分

不微调范式模拟官网评分

    • step1: 模型api配置及加载测试
    • step2: 数据加载与数据分析:
    • 测试集分析:
    • step3: prompt设计:
    • step4 :大模型推理:
    • step 5: 结果评分测试:
      • 评分细则:
      • 评估指标
  • 参考:

比赛说明:
#AI夏令营 #Datawhale #夏令营
主要参考datawhale夏令营活动:零基础入门大模型技术竞赛。
连接:https://datawhaler.feishu.cn/wiki/VIy8ws47ii2N79kOt9zcXnbXnuS
比赛网址:
https://challenge.xfyun.cn/topic/info?type=role-element-extraction&ch=dw24_y0SCtd
在这里插入图片描述

说明:
- 1,主要适用于不微调的范式。
- 2,针对每次在修改prompt,或者COT之后,想要查看性能如何时,都要提交到官网等待。但是受限于官网每个人每天只能提交3次,无法得到更多的反馈。
- 3,在这里主要从训练集train.json中,随机挑选数据,作为验证集,模仿官网的评分细则,用于验证性能指标。当验证性能满意后,再放到test.json数据进行推理,并提交官网。

步骤:
- 1,模型api配置及加载测试:
- 2,数据加载:加载训练集,数据预处理,数据分析,可设置验证集比例
- 3,prompt设计:提示工程或者COT的方式,根据数据分析设计提示;
- 4,模型推理:输出符合格式预测;
- 5,结果测试:采用与讯飞比赛官网相同的得分计算策略。

为了方便展示,参考群里某大佬画的不微调范式的概要图:
在这里插入图片描述

step1: 模型api配置及加载测试

# api配置from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'
# 模型对话测试def get_completions(text):messages = [ChatMessage(role="user",content=text)]spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])return a.generations[0][0].text# 测试模型配置是否正确
text = "你好,请问你是谁?"
get_completions(text)

step2: 数据加载与数据分析:

加载训练集,部分化为验证集,可设置验证集比例

def read_json(json_file_path):"""读取json文件"""with open(json_file_path, 'r') as f:data = json.load(f)return datadef write_json(json_file_path, data):"""写入json文件"""with open(json_file_path, 'w') as f:json.dump(data, f, ensure_ascii=False, indent=4)# 读取数据
train_data = read_json("dataset/train.json")
print('done!')
# 查看数据格式
print(train_data[1]['chat_text'])
# 简单的数据清洗:将对话的无关信息删除。不要让“[图片]”这种信息干扰;
# 如:[链接],[图片],[玫瑰],以及:????上线功能,H5红包,【收集表】2023年度满意度评价等与内容无关的字段去除掉。
import redef clean_chat_text(chat_text):# 定义正则表达式用于匹配链接、图片、特殊表情和无关字段patterns = [r"【收集表】 2023年度服务满意度评价",r"https?://\S+",r"\{[\w\W]*?\}",r'\[.*?\]']# 移除匹配到的内容for pattern in patterns:chat_text = re.sub(pattern, '', chat_text)# 移除多余的空格和换行符chat_text = re.sub(r'\n+', '\n', chat_text).strip()return chat_text# 遍历每个样本,清洗chat_text字段
for sample in train_data:if "chat_text" in sample:sample["chat_text"] = clean_chat_text(sample["chat_text"])
# 验证集划分
import json
import randomdef split_data(data, validation_size):#  # 随机打乱数据# random.shuffle(data)# 划分数据validation_data = data[:validation_size]train_data = data[validation_size:]return train_data, validation_datavalidation_size = 50
# 划分数据
train_data, validation_data = split_data(train_data, validation_size)

测试集分析:

训练集数据分析,假设训练集与测试集同分布。
参考:https://qixiangxingqiu.feishu.cn/wiki/V4duwxVzkipnHjk7djzcFykbnbf
这里面进行了详细的数据分析:
要点:

  1. 姓名都是做选择题的,可以先人工提取所有的姓名再让模型做选择;
  2. 很多类别都是多分类任务,如:咨询类型、意向产品、购买异议点、客户购买阶段、客户是否有意向、客户是否有卡点,能出现的都是固定的那几个。
  3. 在训练集中,年龄、生日、竞品信息都是100%为空的,测试集就不确定了。(我猜测也是空)
    在这里插入图片描述
  4. 一些栏目的数据分布:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    咨询类型:
    在这里插入图片描述
    意向产品
    在这里插入图片描述
    购买异议点:
    在这里插入图片描述

step3: prompt设计:

提示工程或者COT的方式;

# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。表单格式如下:
info: Array<Dict("基本信息-姓名": string | "",  // 客户的姓名。"基本信息-手机号码": string | "",  // 客户的手机号码。"基本信息-邮箱": string | "",  // 客户的电子邮箱地址。"基本信息-地区": string | "",  // 客户所在的地区或城市。"基本信息-详细地址": string | "",  // 客户的详细地址。"基本信息-性别": string | "",  // 客户的性别。"基本信息-年龄": string | "",  // 客户的年龄。"基本信息-生日": string | "",  // 客户的生日。"咨询类型": string[] | [],  // 客户的咨询类型,如询价、答疑等。"意向产品": string[] | [],  // 客户感兴趣的产品。"购买异议点": string[] | [],  // 客户在购买过程中提出的异议或问题。"客户预算-预算是否充足": string | "",  // 客户的预算是否充足。示例:充足, 不充足"客户预算-总体预算金额": string | "",  // 客户的总体预算金额。"客户预算-预算明细": string | "",  // 客户预算的具体明细。"竞品信息": string | "",  // 竞争对手的信息。"客户是否有意向": string | "",  // 客户是否有购买意向。示例:有意向, 无意向"客户是否有卡点": string | "",  // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点"客户购买阶段": string | "",  // 客户当前的购买阶段,如合同中、方案交流等。"下一步跟进计划-参与人": string[] | [],  // 下一步跟进计划中涉及的人员(客服人员)。"下一步跟进计划-时间点": string | "",  // 下一步跟进的时间点。"下一步跟进计划-具体事项": string | ""  // 下一步需要进行的具体事项。
)>请分析以下群聊对话记录,并根据上述格式提取信息:对话记录:
{content}
请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。**输出:**
[{{"基本信息-姓名": "姓名","基本信息-手机号码": "手机号码","基本信息-邮箱": "邮箱","基本信息-地区": "地区","基本信息-详细地址": "详细地址","基本信息-性别": "性别","基本信息-年龄": "年龄","基本信息-生日": "生日","咨询类型": ["咨询类型"],"意向产品": ["意向产品"],"购买异议点": ["购买异议点"],"客户预算-预算是否充足": "充足或不充足","客户预算-总体预算金额": "总体预算金额","客户预算-预算明细": "预算明细","竞品信息": "竞品信息","客户是否有意向": "有意向或无意向","客户是否有卡点": "有卡点或无卡点","客户购买阶段": "购买阶段","下一步跟进计划-参与人": ["跟进计划参与人"],"下一步跟进计划-时间点": "跟进计划时间点","下一步跟进计划-具体事项": "跟进计划具体事项"
}}]

改进一下:在原来的基础上加上下面这段,根据数据分析得来的。

请分析以下群聊对话记录,并根据上述格式提取信息。根据表单的形式,他们具有不同的提取方式,如下:
1,"基本信息-姓名":直接从对话记录中提取询问问题的人物姓名;
2,"基本信息-手机号码":直接从对话记录中提取询问问题的人的手机号码;
3,"基本信息-邮箱":直接从对话记录中提取询问问题的人的邮箱地址,如果不存在则返回空字符串;
4,"基本信息-地区":直接从对话记录中提取询问问题的人所在的城市或地区;
5,"基本信息-详细地址":直接从对话记录中提取询问问题的人的详细地址,如果不存在则返回空字符串;
5,基本信息-性别":客服的性别,一般是空字符;
6,"基本信息-年龄":尝试提取年龄相关的描述,一般为空字符串;
7,"基本信息-生日":尝试提取生日相关的描述,一般为空字符串;
8,"咨询类型":从对话记录中提取关键信息并判断是下面哪一种:答疑,询价,吐槽,答疑和吐槽;
9,"意向产品":从对话记录中提取客户感兴趣的产品,并从下面选项中选择:会话存档,高级版,CRM,开放接口,商城,标准版,定制版,AI,运营服务,会话存档、标准版。
10,"购买异议点":从对话记录中提取客户在购买过程中提出的问题,并从下面选项中选择:产品功能,客户内部问题,价格,工时,竞品。
11,"客户预算-预算是否充足":从对话记录中提取客户预算是否充足,并从下面选项中选择:充足, 不充足。
12,"客户预算-总体预算金额":从对话记录中提取客户预算的总额,如果存在则返回数字,如果不存在则返回空字符串。
13,"客户预算-预算明细":从对话记录中提取客户预算的具体明细,如果不存在则返回空字符串。
14,"竞品信息":从对话记录中提取竞争对手的信息,如果不存在则返回空字符串,一般是没有竞品信息。
15,"客户是否有意向":从对话记录中提取客户是否有购买意向,并从下面选项中选择:有意向, 无意愿。
16,"客户是否有卡点":从对话记录中提取客户在购买过程中是否遇到阻碍或卡点,并从下面选项中选择:有卡点, 无卡点。
17,"客户购买阶段":从对话记录中提取客户当前的购买阶段,如果客户在购买阶段,则从下面选项中选择:赢单,方案交流,续费,项目搁置,合同中,报价, 需求调研,等待结果, 输单。
18,"下一步跟进计划-参与人":从对话记录中提取下一步跟进计划中涉及的人员(客服人员),如果不存在则返回空字符串。
19,"下一步跟进计划-时间点":从对话记录中提取下一步跟进的时间点,如果不存在则返回空字符串。
20,"下一步跟进计划-具体事项":从对话记录中提取下一步进行的具体事项,如果不存在则返回空字符串。

step4 :大模型推理:

输出符合格式预测;以方便与标签对比;

# 大模型输出格式转换
import jsonclass JsonFormatError(Exception):def __init__(self, message):self.message = messagesuper().__init__(self.message)def convert_all_json_in_text_to_dict(text):"""提取LLM输出文本中的json字符串"""dicts, stack = [], []for i in range(len(text)):if text[i] == '{':stack.append(i)elif text[i] == '}':begin = stack.pop()if not stack:dicts.append(json.loads(text[begin:i+1]))return dicts# 查看对话标签
def print_json_format(data):"""格式化输出json格式"""print(json.dumps(data, indent=4, ensure_ascii=False))# 对大模型抽取的结果进行字段格式的检查以及缺少的字段进行补全
def check_and_complete_json_format(data):required_keys = {"基本信息-姓名": str,"基本信息-手机号码": str,"基本信息-邮箱": str,"基本信息-地区": str,"基本信息-详细地址": str,"基本信息-性别": str,"基本信息-年龄": str,"基本信息-生日": str,"咨询类型": list,"意向产品": list,"购买异议点": list,"客户预算-预算是否充足": str,"客户预算-总体预算金额": str,"客户预算-预算明细": str,"竞品信息": str,"客户是否有意向": str,"客户是否有卡点": str,"客户购买阶段": str,"下一步跟进计划-参与人": list,"下一步跟进计划-时间点": str,"下一步跟进计划-具体事项": str}if not isinstance(data, list):raise JsonFormatError("Data is not a list")for item in data:if not isinstance(item, dict):raise JsonFormatError("Item is not a dictionary")for key, value_type in required_keys.items():if key not in item:item[key] = [] if value_type == list else ""if not isinstance(item[key], value_type):raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")if value_type == list and not all(isinstance(i, str) for i in item[key]):raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")return data
# 大模型推理from tqdm import tqdmretry_count = 5 # 重试次数
result = []
error_data = []
labels = []for index, data in tqdm(enumerate(validation_data)):index += 1is_success = Falsefor i in range(retry_count):try:res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))label = data['infos']infos = convert_all_json_in_text_to_dict(res)infos = check_and_complete_json_format(infos)result.append({"infos": infos,"index": index})labels.append({"infos":label,"index": index})is_success = Truebreakexcept Exception as e:print("index:", index, ", error:", e)continueif not is_success:data["index"] = indexerror_data.append(data)

step 5: 结果评分测试:

结果测试:采用与讯飞比赛官网相同的得分计算策略。

评分细则:

满分36分。
按照各类字段提取的难易程度,共设置了1、2、3三种难度分数。
具体待提取的字段以及提取正确时的得分规则,如下链接:https://challenge.xfyun.cn/topic/info?type=role-element-extraction&ch=j4XWs7V

评估指标

测试集的每条数据同样包含共21个字段, 按照各字段难易程度划分总计满分36分。每个提取正确性的判定标准如下:
1)对于答案唯一字段,将使用完全匹配的方式计算提取是否正确,提取正确得到相应分数,否则为0分
2)对于答案不唯一字段,将综合考虑提取完整性、语义相似度等维度判定提取的匹配分数,最终该字段得分为 “匹配分数 * 该字段难度分数”
每条测试数据的最终得分为各字段累计得分。最终测试集上的分数为所有测试数据的平均得分。

# 按照给定的评分规则计算每个样本的得分,然后计算所有样本平均得分
import json# 定义字段及其难度分数,是否单值;
fields = [('基本信息-姓名', 1, True),('基本信息-手机号码', 1, True),('基本信息-邮箱', 1, True),('基本信息-地区', 1, True),('基本信息-详细地址', 1, True),('基本信息-性别', 1, True),('基本信息-年龄', 1, True),('基本信息-生日', 1, True),('咨询类型', 2, False),('意向产品', 3, False),('购买异议点', 3, False),('客户预算-预算是否充足', 2, True),('客户预算-总体预算金额', 2, True),('客户预算-预算明细', 3, True),('竞品信息', 2, True),('客户是否有意向', 1, True),('客户是否有卡点', 1, True),('客户购买阶段', 2, True),('下一步跟进计划-参与人', 2, False),('下一步跟进计划-时间点', 2, True),('下一步跟进计划-具体事项', 3, True)
]
from difflib import SequenceMatcher# 计算单值字段得分
def calculate_single_value_score(pred, true, score):return score if pred == true else 0# 计算文本相似度得分
def calculate_text_similarity_score(pred, true):return SequenceMatcher(None, pred, true).ratio()# 计算多值字段的得分
def calculate_multi_value_score(pred, true, score):if isinstance(pred, list) and isinstance(true, list):pred_str = ' '.join(pred)true_str = ' '.join(true)else:pred_str = str(pred)true_str = str(true)similarity_score = calculate_text_similarity_score(pred_str, true_str)return similarity_score * score# 计算样本得分
def calculate_sample_score(pred, true):total_score = 0for field, score, is_single_value in fields:pred_value = pred.get(field, "")true_value = true.get(field, "")if is_single_value:total_score += calculate_single_value_score(pred_value, true_value, score)else:total_score += calculate_multi_value_score(pred_value, true_value, score)return total_score# 
# 计算平均得分
def calculate_average_score(predictions, truths):total_score = 0num_samples = len(predictions)for i in range(num_samples):pred = predictions[i]true = truths[i]if not pred['infos'] or not true['infos']:continue# print(pred)total_score += calculate_sample_score(pred['infos'][0], true['infos'][0])# for pred, true in zip(predictions, truths):#     total_score += calculate_sample_score(pred['infos'][0], true['infos'][0])return total_score / num_samples
# 计算
average_score = calculate_average_score(result, labels)print("average score:", average_score)

计算得分是21分:
在这里插入图片描述

官网评分:20分,感觉相差3分以内吧。
模拟官网的评分策略还是需要优化的。
在这里插入图片描述

参考:

datawhale夏令营活动:
https://datawhaler.feishu.cn/wiki/VIy8ws47ii2N79kOt9zcXnbXnuS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42660.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI与编程:一个学生的心路历程与思考

前言 大家好&#xff0c;本人是在一个在校的大学生&#xff0c;方向是前端语言。爱好是码代码和看一点小新闻&#xff0c;游戏也是喜爱的。其实本篇文章的想法是源于网上一些人对AI以及对前端的看法&#xff0c;看完网上的评论后我也是有感而发。本篇文章的讨论中心也是围绕着A…

Java项目:基于SSM框架实现的智慧城市实验室管理系统分前后台【ssm+B/S架构+源码+数据库+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的智慧城市实验室管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单…

Http Json参数到x-www-form-urlencoded参数的在线转换工具

Json参数到x-www-form-urlencoded参数的在线转换工具

【Scrapy】 深入了解 Scrapy 中间件中的 process_spider_input 方法

准我快乐地重饰演某段美丽故事主人 饰演你旧年共寻梦的恋人 再去做没流着情泪的伊人 假装再有从前演过的戏份 重饰演某段美丽故事主人 饰演你旧年共寻梦的恋人 你纵是未明白仍夜深一人 穿起你那无言毛衣当跟你接近 &#x1f3b5; 陈慧娴《傻女》 Scrapy 是…

算法:[动态规划] 斐波那契数列模型

目录 题目一&#xff1a;第 N 个泰波那契数 题目二&#xff1a;三步问题 题目三&#xff1a;最小花费爬楼梯 题目四&#xff1a;解码方法 题目一&#xff1a;第 N 个泰波那契数 泰波那契序列 Tn 定义如下&#xff1a; T0 0, T1 1, T2 1, 且在 n > 0 的条件下 Tn3 …

打包导入pyzbar的脚本时的注意事项

目录 前言问题问题的出现解决 总结 本文由Jzwalliser原创&#xff0c;发布在CSDN平台上&#xff0c;遵循CC 4.0 BY-SA协议。 因此&#xff0c;若需转载/引用本文&#xff0c;请注明作者并附原文链接&#xff0c;且禁止删除/修改本段文字。 违者必究&#xff0c;谢谢配合。 个人…

智能扫地机器人的清扫原理是什么

智能扫地机器人的清扫原理主要基于先进的传感器技术、高效的吸尘系统以及智能的路径规划与导航算法。以下是对其清扫原理的详细阐述&#xff1a; 一、环境识别与避障 传感器技术&#xff1a;智能扫地机器人通过搭载的红外线传感器、超声波传感器、激光雷达、摄像头等多种高精度…

用vue2+elementUI封装手机端选择器picker组件,支持单选、多选、远程搜索多选

单选注意点&#xff1a; touchmove.prevent: 在 touchmove 事件上添加 .prevent 修饰符&#xff0c;以阻止默认的滚动行为。 handleTouchStart: 记录触摸开始的 Y 坐标和当前的 translateY 值。 handleTouchMove: 计算触摸移动的距离&#xff0c;并更新 translateY 值。 han…

大数据面试题之Presto[Trino](5)

目录 Presto的扩展性如何&#xff1f; Presto如何与Hadoop生态系统集成&#xff1f; Presto是否可以连接到NoSQL数据库&#xff1f; 如何使用Presto查询Kafka中的数据&#xff1f; Presto与Spark SQL相比有何优势和劣势&#xff1f; Presto如何与云服务集成&#xff1…

ImportError: DLL load failed while importing _imaging: 操作系统无法运行 %1

解决方案&#xff1a; &#xff08;1&#xff09;搜索打开Anaconda Prompt控制台&#xff0c;进入到自己要安装的环境下面去&#xff0c;卸载Pillow:pip uninstall Pillow 没有安装Pillow的就不用卸载&#xff0c;直接安装&#xff0c; &#xff08;2&#xff09;然后再安装&a…

芯片封装简介

1、背景 所谓“封装技术”是一种将集成电路用绝缘的塑料或陶瓷材料打包的技术。以CPU为例&#xff0c;实际看到的体积和外观并不是真正的CPU内核的大小和面貌&#xff0c;而是CPU内核等元件经过封装后的产品。封装技术对于芯片来说是必须的&#xff0c;也是至关重要的。因为芯片…

Python在现代办公自动化中的应用:会不会被裁?就看你的效率了!

Python在现代办公自动化中的应用&#xff1a;提升效率的艺术 Python&#xff0c;作为一门简洁而强大的编程语言&#xff0c;已经成为许多办公室英雄优化日常工作的秘密武器。本文将带你探索Python如何在办公自动化领域大放异彩&#xff0c;并且会巧妙融入开源神器PlugLink&…

注解的原理和解析

关于我 注解的定义 注解&#xff08;Annotation&#xff09;是一种用于为代码中的元素&#xff08;类、方法、变量等&#xff09;添加元数据的机制。它们不直接参与程序的逻辑操作&#xff0c;但可以在编译时或运行时被读取和处理&#xff0c;以实现特定的功能或行为。 为什…

Koa2实现多并发文件上传

koa2批量上传文件 目前的是为了实现批量导入md文件&#xff0c;发布文章。这样就不用自己一篇一篇同步文章了。一次可以同步几千篇文章。 实现界面 内容 主要包含上传的文件标题&#xff0c;文件大小&#xff0c;上传状态。 <el-upload ref"uploader" v-model:…

Vue笔记12-新的组件

Fragment 在Vue2中&#xff0c;template标签内&#xff0c;必须有一个div标签&#xff0c;作为根标签。 在Vue3中&#xff0c;可以没有div根标签&#xff0c;如果没有的话&#xff0c;Vue3会将多个标签包装在一个Fragment虚拟元素里。 这么做的目的&#xff1a;减少标签的层级…

【Java12】封装

封装&#xff08;Encapsulation&#xff09;是面向对象的三大特征之一&#xff08;另两个是继承和多态&#xff09;&#xff0c;指的是将对象的状态信息隐藏在对象内部&#xff0c;不允许外部程序直接访问对象的内部信息&#xff0c;而是通过该类所提供的方法来实现对内部信息的…

java入门3-java语法基础学习(类型转换)

&#xff08;一 &#xff09;自动类型转换 (1)类型范围小的变量可以直接赋值给类型范围大的变量 //自动类型转换执行原理 byte a12; a:00001100 (byte:8位的二进制) int ba; b:00000000 00000000 00000000 00001100 (int&a…

2024中期业绩预告

股票简称业绩预告类型业绩预告摘要净利润变动幅度(%)上年同期净利润(元)公告日期业绩变动原因报告期内公司所处行业情况报告期内公司从事的主要业务核心竞争力分析备注湖北宜化业绩大幅上升净利润51000万元至57000万元;增长幅度为102.09%至125.87%125.872.52亿7/8/2024预计2024…

找不到x3daudio1_7.dll怎么修复?一招搞定x3daudio1_7.dll丢失问题

当你的电脑突然弹出提示&#xff0c;“找不到x3daudio1_7.dll”&#xff0c;这时候你就需要警惕了。这往往意味着你的电脑中的程序出现了问题&#xff0c;你可能会发现自己无法打开程序&#xff0c;或者即便打开了程序也无法正常使用。因此&#xff0c;接下来我们要一起学习一下…

小程序 使用 UI 组件 Vant Weapp 、vant组件样式覆盖

注意&#xff1a;使用vant 包&#xff0c;需要把app.json 中 的"style:v2" 这句去掉 不然会出现样式混乱的问题 Vant Weapp组件库的使用 参考官网 vant官网 Vant Weapp 组件样式覆盖 Vant Weapp 基于微信小程序的机制&#xff0c;为开发者提供了 3 种修改组件样式…