摘要:
记录昇思MindSpore AI框架使用DDPM模型给图像数据正向逐步添加噪声,反向逐步去除噪声的工作原理和实际使用方法、步骤。
一、概念
1. 扩散模型Diffusion Models
DDPM(denoising diffusion probabilistic model)
(无)条件图像/音频/视频生成领域
Open-ai
GLIDE
DALL-E
海德堡大学
潜在扩散
Google Brain
图像生成
2. 扩散过程
固定(或预定义)正向扩散过程 q
将噪声从一些简单分布转换为数据样本
逐渐添加高斯噪声到图像中,得到纯噪声
学习反向去噪的扩散过程 p0
训练神经网络从纯噪声开始逐渐图像去噪,得到实际图像
3. 扩散模型实现原理
(1)正向过程
图片上加噪声
神经网络优化可控损失函数
真实数据分布q(x0)
由于 x0∼q(x0) ,采样获得图像x0
定义正向扩散过程q(xt|xt-1)
动态方差 0<β1<β2<...<βT<1 时间步长t
每个时间步长t添加高斯噪声
马尔科夫过程:
正态分布(高斯分布)定义参数
平均值μ
方差σ2 ≥0
每个时间步长t从条件高斯分布产生新的噪声图像
采样
设置
每个时间步长t不恒定
通过动态方差
每个时间步长的 是线性的、二次的、余弦的等
设置时间表,得到,...,,...
t足够大时就是纯高斯噪声
(2)反向过程
条件概率分布
采样随机高斯噪声
逐渐去噪
得到真实分布 样本
神经网络近似学习条件概率分布 pθ(xt-1|xt)
神经网络参数θ
高斯分布参数:
由参数化的平均值
由参数化的方差
反向过程公式
平均值和方差取决于噪声水平t
神经网络通过学习来找到这些均值和方差
方差固定
神经网络只学习条件概率分布的平均值μθ
导出目标函数来学习反向过程的平均值
q和组合为变分自动编码器(VAE)
最小化真值数据样本的似然负对数
变分下界ELBO是每个时间步长的损失之和
每项损失是2个高斯分布之间的KL发散,除了
相对于均值的L2-loss!
构建Diffusion正向过程的直接结果
条件下任意噪声水平采样
,
采样高斯噪声适当缩放添加到 直接获得
是已知方差计划的函数,可以预先计算
训练期间随机采样t优化损失函数L的随机项
优点
重新参数化平均值
神经网络学习构成损失的KL项中噪声的附加噪声
神经网络成了噪声预测器,不是均值预测器
平均值计算:
目标函数Lt :
随机步长t由(ϵ∼N(0,I)) 给定
初始图像
ϵ时间步长t纯噪声采样
神经网络
基于真实噪声和预测高斯噪声之间的简单均方误差(MSE)优化神经网络
训练算法如下:
4. Net神经网络预测噪声
神经网络需要在特定时间步长接收带噪声的图像,并返回预测的噪声。
预测噪声是与输入图像具有相同大小/分辨率的张量。
网络接受并输出相同形状的张量。
自动编码器
编码器编码图像为"bottleneck"--较小的隐藏表示
解码器解码"bottleneck"回实际图像
残差连接改善梯度流
正向和反向过程在有限时间步长T(T=1000)内
从t=0开始,在数据分布中采样真实图像
使用ImageNet猫图像添加噪声
正向过程
每个时间步长t都采样一些高斯分布噪声
添加到上一个次图像中
足够大的T + 较好地添加噪声过程
t = T时得到各向同性高斯分布
二、环境准备
安装并导入所需的库MindSpore、download、dataset、matplotlib以及tqdm
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
输出:
import math
from functools import partial
%matplotlib inline
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import numpy as np
from multiprocessing import cpu_count
from download import downloadimport mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor, Parameter
from mindspore import dtype as mstype
from mindspore.dataset.vision import Resize, Inter, CenterCrop, ToTensor, RandomHorizontalFlip, ToPIL
from mindspore.common.initializer import initializer
from mindspore.amp import DynamicLossScalerms.set_seed(0)
三、构建Diffusion模型
1.定义帮助函数和类
def rearrange(head, inputs):b, hc, x, y = inputs.shapec = hc // headreturn inputs.reshape((b, head, c, x * y))def rsqrt(x):res = ops.sqrt(x)return ops.inv(res)def randn_like(x, dtype=None):if dtype is None:dtype = x.dtyperes = ops.standard_normal(x.shape).astype(dtype)return resdef randn(shape, dtype=None):if dtype is None:dtype = ms.float32res = ops.standard_normal(shape).astype(dtype)return resdef randint(low, high, size, dtype=ms.int32):res = ops.uniform(size, Tensor(low, dtype), Tensor(high, dtype), dtype=dtype)return resdef exists(x):return x is not Nonedef default(val, d):if exists(val):return valreturn d() if callable(d) else ddef _check_dtype(d1, d2):if ms.float32 in (d1, d2):return ms.float32if d1 == d2:return d1raise ValueError('dtype is not supported.')class Residual(nn.Cell):def __init__(self, fn):super().__init__()self.fn = fndef construct(self, x, *args, **kwargs):return self.fn(x, *args, **kwargs) + x
2.定义上采样和下采样操作的别名
def Upsample(dim):return nn.Conv2dTranspose(dim, dim, 4, 2, pad_mode="pad", padding=1)def Downsample(dim):return nn.Conv2d(dim, dim, 4, 2, pad_mode="pad", padding=1)
3.位置向量
神经网络时间参数使用正弦位置嵌入来编码特定时间步长t
SinusoidalPositionEmbeddings模块
输入采用(batch_size, 1)形状的张量
批处理噪声图像、噪声水平
转换为(batch_size, dim)形状的张量
dim是位置嵌入尺寸
添加到每个剩余块中
class SinusoidalPositionEmbeddings(nn.Cell):def __init__(self, dim):super().__init__()self.dim = dimhalf_dim = self.dim // 2emb = math.log(10000) / (half_dim - 1)emb = np.exp(np.arange(half_dim) * - emb)self.emb = Tensor(emb, ms.float32)def construct(self, x):emb = x[:, None] * self.emb[None, :]emb = ops.concat((ops.sin(emb), ops.cos(emb)), axis=-1)return emb
4.ResNet/ConvNeXT块
选择ConvNeXT块构建U-Net模型
class Block(nn.Cell):def __init__(self, dim, dim_out, groups=1):super().__init__()self.proj = nn.Conv2d(dim, dim_out, 3, pad_mode="pad", padding=1)self.proj = c(dim, dim_out, 3, padding=1, pad_mode='pad')self.norm = nn.GroupNorm(groups, dim_out)self.act = nn.SiLU()
def construct(self, x, scale_shift=None):x = self.proj(x)x = self.norm(x)
if exists(scale_shift):scale, shift = scale_shiftx = x * (scale + 1) + shift
x = self.act(x)return x
class ConvNextBlock(nn.Cell):def __init__(self, dim, dim_out, *, time_emb_dim=None, mult=2, norm=True):super().__init__()self.mlp = (nn.SequentialCell(nn.GELU(), nn.Dense(time_emb_dim, dim))if exists(time_emb_dim)else None)
self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, group=dim, pad_mode="pad")self.net = nn.SequentialCell(nn.GroupNorm(1, dim) if norm else nn.Identity(),nn.Conv2d(dim, dim_out * mult, 3, padding=1, pad_mode="pad"),nn.GELU(),nn.GroupNorm(1, dim_out * mult),nn.Conv2d(dim_out * mult, dim_out, 3, padding=1, pad_mode="pad"),)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def construct(self, x, time_emb=None):h = self.ds_conv(x)if exists(self.mlp) and exists(time_emb):assert exists(time_emb), "time embedding must be passed in"condition = self.mlp(time_emb)condition = condition.expand_dims(-1).expand_dims(-1)h = h + condition
h = self.net(h)return h + self.res_conv(x)
5.Attention模块
multi-head self-attention
常规注意力中缩放
LinearAttention
时间和内存要求在序列长度上线性缩放
class Attention(nn.Cell):def __init__(self, dim, heads=4, dim_head=32):super().__init__()self.scale = dim_head ** -0.5self.heads = headshidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)self.to_out = nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True)self.map = ops.Map()self.partial = ops.Partial()
def construct(self, x):b, _, h, w = x.shapeqkv = self.to_qkv(x).chunk(3, 1)q, k, v = self.map(self.partial(rearrange, self.heads), qkv)
q = q * self.scale
# 'b h d i, b h d j -> b h i j'sim = ops.bmm(q.swapaxes(2, 3), k)attn = ops.softmax(sim, axis=-1)# 'b h i j, b h d j -> b h i d'out = ops.bmm(attn, v.swapaxes(2, 3))out = out.swapaxes(-1, -2).reshape((b, -1, h, w))
return self.to_out(out)
class LayerNorm(nn.Cell):def __init__(self, dim):super().__init__()self.g = Parameter(initializer('ones', (1, dim, 1, 1)), name='g')
def construct(self, x):eps = 1e-5var = x.var(1, keepdims=True)mean = x.mean(1, keep_dims=True)return (x - mean) * rsqrt((var + eps)) * self.g
class LinearAttention(nn.Cell):def __init__(self, dim, heads=4, dim_head=32):super().__init__()self.scale = dim_head ** -0.5self.heads = headshidden_dim = dim_head * headsself.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, pad_mode='valid', has_bias=False)
self.to_out = nn.SequentialCell(nn.Conv2d(hidden_dim, dim, 1, pad_mode='valid', has_bias=True),LayerNorm(dim))
self.map = ops.Map()self.partial = ops.Partial()
def construct(self, x):b, _, h, w = x.shapeqkv = self.to_qkv(x).chunk(3, 1)q, k, v = self.map(self.partial(rearrange, self.heads), qkv)
q = ops.softmax(q, -2)k = ops.softmax(k, -1)
q = q * self.scalev = v / (h * w)
# 'b h d n, b h e n -> b h d e'context = ops.bmm(k, v.swapaxes(2, 3))# 'b h d e, b h d n -> b h e n'out = ops.bmm(context.swapaxes(2, 3), q)
out = out.reshape((b, -1, h, w))return self.to_out(out)
6.组归一化
U-Net卷积/注意层与群归一化
定义PreNorm类
在注意层之前应用groupnorm
class PreNorm(nn.Cell):def __init__(self, dim, fn):super().__init__()self.fn = fnself.norm = nn.GroupNorm(1, dim)
def construct(self, x):x = self.norm(x)return self.fn(x)
7.条件U-Net
网络
输入
噪声图像,(batch_size, num_channels, height, width)形状
噪音水平,(batch_size, 1)形状
输出
噪声,(batch_size, num_channels, height, width)形状的张量
8.网络构建过程
噪声图像批上应用卷积层
计算噪声水平位置
应用一系列下采样级
每个下采样阶段
2个ResNet/ConvNeXT块
Groupnorm
Attention
残差连接
一个下采样操作
应用ResNet或ConvNeXT块
交织attention
应用一系列上采样级
每个上采样级
2个ResNet/ConvNeXT块
Groupnorm
Attention
残差连接
一个上采样操作
应用ResNet/ConvNeXT块
应用卷积层
class Unet(nn.Cell):def __init__(self,dim,init_dim=None,out_dim=None,dim_mults=(1, 2, 4, 8),channels=3,with_time_emb=True,convnext_mult=2,):super().__init__()
self.channels = channels
init_dim = default(init_dim, dim // 3 * 2)self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3, pad_mode="pad", has_bias=True)
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]in_out = list(zip(dims[:-1], dims[1:]))
block_klass = partial(ConvNextBlock, mult=convnext_mult)
if with_time_emb:time_dim = dim * 4self.time_mlp = nn.SequentialCell(SinusoidalPositionEmbeddings(dim),nn.Dense(dim, time_dim),nn.GELU(),nn.Dense(time_dim, time_dim),)else:time_dim = Noneself.time_mlp = None
self.downs = nn.CellList([])self.ups = nn.CellList([])num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):is_last = ind >= (num_resolutions - 1)
self.downs.append(nn.CellList([block_klass(dim_in, dim_out, time_emb_dim=time_dim),block_klass(dim_out, dim_out, time_emb_dim=time_dim),Residual(PreNorm(dim_out, LinearAttention(dim_out))),Downsample(dim_out) if not is_last else nn.Identity(),]))
mid_dim = dims[-1]self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):is_last = ind >= (num_resolutions - 1)
self.ups.append(nn.CellList([block_klass(dim_out * 2, dim_in, time_emb_dim=time_dim),block_klass(dim_in, dim_in, time_emb_dim=time_dim),Residual(PreNorm(dim_in, LinearAttention(dim_in))),Upsample(dim_in) if not is_last else nn.Identity(),]))
out_dim = default(out_dim, channels)self.final_conv = nn.SequentialCell(block_klass(dim, dim), nn.Conv2d(dim, out_dim, 1))
def construct(self, x, time):x = self.init_conv(x)
t = self.time_mlp(time) if exists(self.time_mlp) else None
h = []
for block1, block2, attn, downsample in self.downs:x = block1(x, t)x = block2(x, t)x = attn(x)h.append(x)
x = downsample(x)
x = self.mid_block1(x, t)x = self.mid_attn(x)x = self.mid_block2(x, t)
len_h = len(h) - 1for block1, block2, attn, upsample in self.ups:x = ops.concat((x, h[len_h]), 1)len_h -= 1x = block1(x, t)x = block2(x, t)x = attn(x)
x = upsample(x)return self.final_conv(x)
四、正向扩散
1.定义T时间步的时间表
def linear_beta_schedule(timesteps):beta_start = 0.0001beta_end = 0.02return np.linspace(beta_start, beta_end, timesteps).astype(np.float32)
首先使用T = 200时间步长的线性计划
定义的各种变量
方差 的累积乘积
每个变量都是一维张量,存储t到T的值
extract函数,批量提取t索引
# 扩散200步
timesteps = 200
# 定义 beta schedule
betas = linear_beta_schedule(timesteps=timesteps)
# 定义 alphas
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.pad(alphas_cumprod[:-1], (1, 0), constant_values=1)
sqrt_recip_alphas = Tensor(np.sqrt(1. / alphas))
sqrt_alphas_cumprod = Tensor(np.sqrt(alphas_cumprod))
sqrt_one_minus_alphas_cumprod = Tensor(np.sqrt(1. - alphas_cumprod))
# 计算 q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
p2_loss_weight = (1 + alphas_cumprod / (1 - alphas_cumprod)) ** -0.
p2_loss_weight = Tensor(p2_loss_weight)
def extract(a, t, x_shape):b = t.shape[0]out = Tensor(a).gather(t, -1)return out.reshape(b, *((1,) * (len(x_shape) - 1)))
2.扩散过程的每个时间步给猫图像添加噪音
# 下载猫猫图像
url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip'
path = download(url, './', kind="zip", replace=True)
输出:
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip (170 kB)file_sizes: 100%|████████████████████████████| 174k/174k [00:00<00:00, 1.45MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
from PIL import Image
image = Image.open('./image_cat/jpg/000000039769.jpg')
base_width = 160
image = image.resize((base_width, int(float(image.size[1]) * float(base_width / float(image.size[0])))))
image.show()
输出:
添加噪声到mindspore张量
定义图像转换
从PIL图像转换到mindspore张量
除以255标准化图像,确保在[-1,1]范围内(假设图像数据由{0,1,...,255}中的整数组成)
from mindspore.dataset import ImageFolderDataset
image_size = 128
transforms = [Resize(image_size, Inter.BILINEAR),CenterCrop(image_size),ToTensor(),lambda t: (t * 2) - 1
]
path = './image_cat'
dataset = ImageFolderDataset(dataset_dir=path, num_parallel_workers=cpu_count(),extensions=['.jpg', '.jpeg', '.png', '.tiff'],num_shards=1, shard_id=0, shuffle=False, decode=True)
dataset = dataset.project('image')
transforms.insert(1, RandomHorizontalFlip())
dataset_1 = dataset.map(transforms, 'image')
dataset_2 = dataset_1.batch(1, drop_remainder=True)
x_start = next(dataset_2.create_tuple_iterator())[0]
print(x_start.shape)
输出:
(1, 3, 128, 128)
3.定义反向变换
输入一个包在[−1,1]中的张量
输出PIL图像
import numpy as np
reverse_transform = [lambda t: (t + 1) / 2,lambda t: ops.permute(t, (1, 2, 0)), # CHW to HWClambda t: t * 255.,lambda t: t.asnumpy().astype(np.uint8),ToPIL()
]
def compose(transform, x):for d in transform:x = d(x)return x
验证:
reverse_image = compose(reverse_transform, x_start[0])
reverse_image.show()
输出:
4.定义正向扩散过程
def q_sample(x_start, t, noise=None):if noise is None:noise = randn_like(x_start)return (extract(sqrt_alphas_cumprod, t, x_start.shape) * x_start +extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
测试:
def get_noisy_image(x_start, t):# 添加噪音x_noisy = q_sample(x_start, t=t)
# 转换为 PIL 图像noisy_image = compose(reverse_transform, x_noisy[0])
return noisy_image
[18]:# 设置 time step
t = Tensor([40])
noisy_image = get_noisy_image(x_start, t)
print(noisy_image)
noisy_image.show()
输出:
<PIL.Image.Image image mode=RGB size=128x128 at 0x7F54569F3950>
显示不同的时间步骤:
import matplotlib.pyplot as plt
def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):if not isinstance(imgs[0], list):imgs = [imgs]
num_rows = len(imgs)num_cols = len(imgs[0]) + with_orig_, axs = plt.subplots(figsize=(200, 200), nrows=num_rows, ncols=num_cols, squeeze=False)for row_idx, row in enumerate(imgs):row = [image] + row if with_orig else rowfor col_idx, img in enumerate(row):ax = axs[row_idx, col_idx]ax.imshow(np.asarray(img), **imshow_kwargs)ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
if with_orig:axs[0, 0].set(title='Original image')axs[0, 0].title.set_size(8)if row_title is not None:for row_idx in range(num_rows):axs[row_idx, 0].set(ylabel=row_title[row_idx])
plt.tight_layout()
[20]:plot([get_noisy_image(x_start, Tensor([t])) for t in [0, 50, 100, 150, 199]])
定义损失函数:
def p_losses(unet_model, x_start, t, noise=None):if noise is None:noise = randn_like(x_start)x_noisy = q_sample(x_start=x_start, t=t, noise=noise)predicted_noise = unet_model(x_noisy, t)
loss = nn.SmoothL1Loss()(noise, predicted_noise)# todoloss = loss.reshape(loss.shape[0], -1)loss = loss * extract(p2_loss_weight, t, loss.shape)return loss.mean()
五、数据准备与处理
1.下载数据集
Fashion-MNIST图像
线性缩放为 [−1,1]
相同图像大小28x28
随机水平翻转
使用download下载
解压到指定路径./
# 下载MNIST数据集
url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip'
path = download(url, './', kind="zip", replace=True)
输出:
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip (29.4 MB)file_sizes: 100%|██████████████████████████| 30.9M/30.9M [00:00<00:00, 43.4MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
from mindspore.dataset import FashionMnistDataset
image_size = 28
channels = 1
batch_size = 16
fashion_mnist_dataset_dir = "./dataset"
dataset = FashionMnistDataset(dataset_dir=fashion_mnist_dataset_dir, usage="train", num_parallel_workers=cpu_count(), shuffle=True, num_shards=1, shard_id=0)
2.定义transform操作
图像预处理
随机水平翻转
重新调整
值在 [−1,1]范围内
transforms = [RandomHorizontalFlip(),ToTensor(),lambda t: (t * 2) - 1
]
dataset = dataset.project('image')
dataset = dataset.shuffle(64)
dataset = dataset.map(transforms, 'image')
dataset = dataset.batch(16, drop_remainder=True)
x = next(dataset.create_dict_iterator())
print(x.keys())
输出:
dict_keys(['image'])
3.采样
在训练期间从模型中采样。
采样算法2:
反转扩散过程
从T开始,采样高斯分布纯噪声
神经网络使用条件概率逐渐去噪,时间步t=0结束
重新参数化
噪声预测器插入平均值
导出降噪程度较低的图像xt-1
得到一个近似真实数据分布的图像
def p_sample(model, x, t, t_index):betas_t = extract(betas, t, x.shape)sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x.shape)sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)model_mean = sqrt_recip_alphas_t * (x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t)
if t_index == 0:return model_meanposterior_variance_t = extract(posterior_variance, t, x.shape)noise = randn_like(x)return model_mean + ops.sqrt(posterior_variance_t) * noise
def p_sample_loop(model, shape):b = shape[0]# 从纯噪声开始img = randn(shape, dtype=None)imgs = []
for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):img = p_sample(model, img, ms.numpy.full((b,), i, dtype=mstype.int32), i)imgs.append(img.asnumpy())return imgs
def sample(model, image_size, batch_size=16, channels=3):return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))
六、训练过程
# 定义动态学习率
lr = nn.cosine_decay_lr(min_lr=1e-7, max_lr=1e-4, total_step=10*3750, step_per_epoch=3750, decay_epoch=10)
# 定义 Unet模型
unet_model = Unet(dim=image_size,channels=channels,dim_mults=(1, 2, 4,)
)
name_list = []
for (name, par) in list(unet_model.parameters_and_names()):name_list.append(name)
i = 0
for item in list(unet_model.trainable_params()):item.name = name_list[i]i += 1
# 定义优化器
optimizer = nn.Adam(unet_model.trainable_params(), learning_rate=lr)
loss_scaler = DynamicLossScaler(65536, 2, 1000)
# 定义正向过程
def forward_fn(data, t, noise=None):loss = p_losses(unet_model, data, t, noise)return loss
# 计算梯度
grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=False)
# 梯度更新
def train_step(data, t, noise):loss, grads = grad_fn(data, t, noise)optimizer(grads)return loss
import time
# 由于时间原因,epochs设置为1,可根据需求进行调整
epochs = 1
for epoch in range(epochs):begin_time = time.time()for step, batch in enumerate(dataset.create_tuple_iterator()):unet_model.set_train()batch_size = batch[0].shape[0]t = randint(0, timesteps, (batch_size,), dtype=ms.int32)noise = randn_like(batch[0])loss = train_step(batch[0], t, noise)
if step % 500 == 0:print(" epoch: ", epoch, " step: ", step, " Loss: ", loss)end_time = time.time()times = end_time - begin_timeprint("training time:", times, "s")# 展示随机采样效果unet_model.set_train(False)samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)plt.imshow(samples[-1][5].reshape(image_size, image_size, channels), cmap="gray")
print("Training Success!")
输出:
epoch: 0 step: 0 Loss: 0.43375123epoch: 0 step: 500 Loss: 0.113769315epoch: 0 step: 1000 Loss: 0.08649178epoch: 0 step: 1500 Loss: 0.067664884epoch: 0 step: 2000 Loss: 0.07234038epoch: 0 step: 2500 Loss: 0.043936778epoch: 0 step: 3000 Loss: 0.058127824epoch: 0 step: 3500 Loss: 0.049789283
training time: 922.3438229560852 sepoch: 1 step: 0 Loss: 0.05088563epoch: 1 step: 500 Loss: 0.051174678epoch: 1 step: 1000 Loss: 0.04455947epoch: 1 step: 1500 Loss: 0.055165425epoch: 1 step: 2000 Loss: 0.043942295epoch: 1 step: 2500 Loss: 0.03274461epoch: 1 step: 3000 Loss: 0.048117325epoch: 1 step: 3500 Loss: 0.063063145
training time: 937.5596783161163 sepoch: 2 step: 0 Loss: 0.052893892epoch: 2 step: 500 Loss: 0.05721748epoch: 2 step: 1000 Loss: 0.057248186epoch: 2 step: 1500 Loss: 0.048806388epoch: 2 step: 2000 Loss: 0.05007638epoch: 2 step: 2500 Loss: 0.04337231epoch: 2 step: 3000 Loss: 0.043207955epoch: 2 step: 3500 Loss: 0.034530163
training time: 947.6374666690826 sepoch: 3 step: 0 Loss: 0.04867614epoch: 3 step: 500 Loss: 0.051636297epoch: 3 step: 1000 Loss: 0.03338969epoch: 3 step: 1500 Loss: 0.0420174epoch: 3 step: 2000 Loss: 0.052145053epoch: 3 step: 2500 Loss: 0.03905913epoch: 3 step: 3000 Loss: 0.07621498epoch: 3 step: 3500 Loss: 0.06484105
training time: 957.7780408859253 sepoch: 4 step: 0 Loss: 0.046281893epoch: 4 step: 500 Loss: 0.03783619epoch: 4 step: 1000 Loss: 0.0587488epoch: 4 step: 1500 Loss: 0.06974746epoch: 4 step: 2000 Loss: 0.04299112epoch: 4 step: 2500 Loss: 0.027945498epoch: 4 step: 3000 Loss: 0.045338146epoch: 4 step: 3500 Loss: 0.06362417
training time: 955.6116819381714 sepoch: 5 step: 0 Loss: 0.04781142epoch: 5 step: 500 Loss: 0.032488734epoch: 5 step: 1000 Loss: 0.061507083epoch: 5 step: 1500 Loss: 0.039130375epoch: 5 step: 2000 Loss: 0.034972396epoch: 5 step: 2500 Loss: 0.039485026epoch: 5 step: 3000 Loss: 0.06690869epoch: 5 step: 3500 Loss: 0.05355365
training time: 951.7758958339691 sepoch: 6 step: 0 Loss: 0.04807706epoch: 6 step: 500 Loss: 0.021469856epoch: 6 step: 1000 Loss: 0.035354104epoch: 6 step: 1500 Loss: 0.044303045epoch: 6 step: 2000 Loss: 0.040063944epoch: 6 step: 2500 Loss: 0.02970439epoch: 6 step: 3000 Loss: 0.041152682epoch: 6 step: 3500 Loss: 0.02062454
training time: 955.2220208644867 sepoch: 7 step: 0 Loss: 0.029668871epoch: 7 step: 500 Loss: 0.028485576epoch: 7 step: 1000 Loss: 0.029675964epoch: 7 step: 1500 Loss: 0.052743085epoch: 7 step: 2000 Loss: 0.03664278epoch: 7 step: 2500 Loss: 0.04454907epoch: 7 step: 3000 Loss: 0.043067697epoch: 7 step: 3500 Loss: 0.0619511
training time: 952.6654670238495 sepoch: 8 step: 0 Loss: 0.055328347epoch: 8 step: 500 Loss: 0.035807922epoch: 8 step: 1000 Loss: 0.026412832epoch: 8 step: 1500 Loss: 0.051044375epoch: 8 step: 2000 Loss: 0.05474911epoch: 8 step: 2500 Loss: 0.044595096epoch: 8 step: 3000 Loss: 0.034082986epoch: 8 step: 3500 Loss: 0.02653109
training time: 961.9374921321869 sepoch: 9 step: 0 Loss: 0.039675284epoch: 9 step: 500 Loss: 0.046295933epoch: 9 step: 1000 Loss: 0.031403508epoch: 9 step: 1500 Loss: 0.028816734epoch: 9 step: 2000 Loss: 0.06530296epoch: 9 step: 2500 Loss: 0.051451046epoch: 9 step: 3000 Loss: 0.037913296epoch: 9 step: 3500 Loss: 0.030541396
training time: 974.643147945404 s
Training Success!
七、推理过程(从模型中采样)
从模型中采样,只使用上面定义的采样函数:
# 采样64个图片
unet_model.set_train(False)
samples = sample(unet_model, image_size=image_size, batch_size=64, channels=channels)
输出:
sampling loop time step: 0%| | 0/200 [00:00<?, ?it/s]
# 展示一个随机效果
random_index = 5
plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap="gray")
cmap="gray")
输出:
<matplotlib.image.AxesImage at 0x7f5175ea1690>
这个模型产生一件衣服!
创建去噪过程的gif:
import matplotlib.animation as animation
random_index = 53
fig = plt.figure()
ims = []
for i in range(timesteps):im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap="gray", animated=True)ims.append([im])
animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=100)
animate.save('diffusion.gif')
plt.show()
输出: