14-27 剑和诗人 1 – 请称呼我AI工程师

​​​​​

14-27 剑和诗人 1 - 请称呼我AI工程师

仅初创企业的收入就超过 10 亿美元,随着 Gen AI 的早期成功迹象,每家有远见的科技公司都在竞相将 Gen AI 功能融入其产品、客户支持机器人和营销中。作为一种技术,AI 正处于与 90 年代末互联网相似的阶段,甚至完全相同。

人工智能的需求和建设者不断增长

为了发现这一趋势,我查看了YCombinator 的公司组合。对于那些不知道的人来说,YCombinator 是一家总部位于美国的著名创业加速器。他们支持的许多初创公司现在已成为科技巨头,例如 Airbnb、Dropbox、Stripe 和 Reddit。

14-27 剑和诗人 1 - 请称呼我AI工程师

这是我得到的结果,看看 2017 年至 2023 年使用 AI 构建的公司数量。自 2021 年以来,使用 AI 构建的公司数量显着增加,然后在 2022 年 ChatGPT 推出后激增。

这让人们有信心在不久的将来会有越来越多的公司采用人工智能,从而导致对人工智能工程师的需求增加。

而且,对于任何程序员来说,这是开始构建和学习的最佳时机。

为什么现在?!

人工智能开发领域已经发展到足以通过开源 LLM、框架和现成的 API 快速起步,并且社区也已经发展到足以获得所需的支持。

人工智能初创企业、人工智能加速器计划、开源存储库、SDK、软件包、云平台——一个共同的主题——尽快构建、解决和交付。

曾经需要专门的研究团队和多年的密集工作才能完成的工作,现在只需 API 文档和几天的专注努力就能有效地完成。

那么,建筑师(喜欢建造产品的人)或工程师今天可以如何深入研究人工智能领域呢?

要回答这个问题,你首先应该了解该领域发生的一切。

人工智能开发层

我将当今人工智能发展的主要领域分为三个不同的层次。

14-27 剑和诗人 1 - 请称呼我AI工程师

AI 开发图层画布

  1. 应用程序开发— 此层包括使用一些 AI 工程框架(如 Langchain、LlamaIndex、Autogen 等)在现成的 LLM API 之上开发应用程序(接口),然后监控和评估您的应用程序。
    这是最活跃和最热闹的一层。这就是赚钱的地方。用例越真实,价值就越大。要开发这些 AI 应用程序,您需要掌握一套特殊的工程技能,我将在本文后面解释。
  2. 模型开发— 更深入一层,我们致力于提供更优化模型的一切工作。使用各种工具设计数据集、分布式训练、评估和基准测试以及推理服务。
    这一层需要深度学习、分布式系统、数据集管理和工程方面的深厚专业知识。
  3. 基础设施— 支撑一切的是基础设施层,包括硬件、云服务提供商和 GPU,这些大型模型就是在这些层上进行训练的。
    这一层需要计算(操作系统、网络、安全)、分布式系统以及 AI 模型开发方面的深厚专业知识。

除此之外,还有另一层研究,即人工智能风险和安全协调,以防止流氓人工智能。这是 OpenAI 今年早些时候推出的一项 1000 万美元的超级协调资助计划。

由于应用层最受关注,因此对一类懂得如何在 AI 基础上进行构建的特殊工程师的需求日益增加。虽然这些工程师没有标准术语,但大多数公司都称他们为 AI 工程师。

那么,我们如何定义 AI 工程师的角色?他们需要是 AI 或深度学习方面的专家吗?

14-27 剑和诗人 1 - 请称呼我AI工程师

人工智能工程师是一位专业的程序员,擅长利用人工智能技术开发全面的与形式无关的应用程序。

“表单不可知”指的是应用程序类型的多样性,从简单的聊天界面到复杂的全栈应用程序、Chrome 扩展程序、Python 包或 SDK。

与深入研究算法基础的人工智能研究人员不同,人工智能工程师专注于应用现有的人工智能模型来创造以用户为中心的产品。

但问题又出现了,难道我不需要成为人工智能专家才能成为人工智能工程师吗?

最简洁的答案是

这个角色不需要对人工智能原理有详尽的专业知识,例如了解 Transformer 模型的内部工作原理,就像学习游泳不需要深入研究浮力物理学一样。

虽然对深度学习和机器学习的深厚了解可以带来优势,但当前的行业需求更倾向于实际应用而非理论研究。

那么,我们如何区分人工智能工程师和人工智能研究员呢?

AI 工程师 vs AI 研究员

下图绘制了使用 API 等工程技能与设计模型架构或了解变压器的工作原理等 AI 研究技能之间的对应关系。

人工智能工程师擅长创建人工智能应用程序,专注于最大化模型功能并优化大型语言模型 (LLM) 的工作流程。

14-27 剑和诗人 1 - 请称呼我AI工程师

AI 工程师 vs AI 研究员——

通过此图表,我还认为与 ML 原生配置文件相比,更工程,原生的配置文件将在这个角色中发挥更大的作用。

你一定想知道,如果人工智能研究人员擅长工程并且在人工智能方面拥有深厚的专业知识,那么为什么公司不雇用他们而不是人工智能工程师呢?

简短的回答是稀缺性,这反过来会导致成本增加。

下一个重大技术角色——人工智能工程师?

以下是关于这个生态系统如何通过“模型即服务”快速发展的一些有趣见解:

  1. 需求和供应动态:所有顶尖的法学硕士研究人员都已被谷歌、OpenAI、微软和 Meta 等巨头选中,法学硕士研究人员的稀缺表明对人工智能工程师的需求迫切。这类专业人员是尖端研究与实际应用之间的桥梁,确保人工智能技术得到更广泛的应用和实施。
  2. 快速原型设计和敏捷性:与传统的机器学习方法不同,传统的机器学习方法需要大量研究来确定我们是否需要使用机器学习来解决问题,而人工智能工程师可以使用现成的模型 API 快速对人工智能产品进行原型设计和迭代。
  3. 创新变得更容易、更快捷:基础模型以最少的输入在各种任务中表现出显著的适应性,这对于利用这些功能来创建超出研究人员最初设想范围的创新解决方案的人工智能工程师来说非常宝贵。
  4. 推理优化以应对计算限制:对 GPU 的不断增长的需求和专用计算集群的形成凸显了在这些限制内优化模型性能和创新的 AI 工程师的重要性。

虽然推荐系统、欺诈检测和异常检测等传统机器学习问题将继续改进,但我们还有一系列全新的人工智能应用需要满足。

HuggingFace 联合创始人Clem Delangue表示:

人工智能是构建所有技术的新范式

因此,我们需要越来越多的人工智能工程师!

看看红杉资本绘制的这份生成式人工智能市场地图。应用层几乎涵盖了所有领域的用例和公司:

14-27 剑和诗人 1 - 请称呼我AI工程师

结论

综上所述,我们有:

  1. 来自行业领袖和人工智能领域的资深专家的呼吁,例如 Andrej Karpathy、Chip Huyen 和 Clem 等。
  2. YCombinator 等大型孵化器、风险投资公司和投资者一直在投资人工智能公司,他们在人工智能领域长期耕耘,证明这是构建所有技术的下一个大范式。
  3. 人工智能研究与工程之间的差距需要缩小,而人工智能工程师将推动这一进程。
  4. 人工智能应用生态系统发展迅速 — 每周都会推出全新和改进的开发者工具、随时可用的 API、库和云平台。除此之外,我们还有一个不断发展壮大的社区来提供所需的支持。

因此,现在是时候开始利用人工智能、培养这些技能并为下一个重大技术角色做好准备了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/41377.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【unity实战】Unity中使用A*寻路+有限状态机制作一个俯视角敌人AI

最终效果 文章目录 最终效果前言A*寻路插件介绍下载导入AI插件生成寻路网格节点的类型障碍物寻路测试A*只打印报错信息 代码控制寻路动画配置敌人状态机各种状态脚本效果完结 前言 前面做过有限状态机制作一个敌人AI:【unity实战】在Unity中使用有限状态机制作一个…

vxe-table合并行数据;element-plus的el-table动态合并行

文章目录 一、vxe-table合并行数据1.代码 二、使用element-plus的el-table动态合并行2.代码 注意&#xff1a;const fields 是要合并的字段 一、vxe-table合并行数据 1.代码 <vxe-tableborderresizableheight"500":scroll-y"{enabled: false}":span-m…

信创-办公软件应用工程师认证

随着国家对信息技术自主创新的战略重视程度不断提升&#xff0c;信创产业迎来前所未有的发展机遇。未来几年内&#xff0c;信创产业将呈现市场规模扩大、技术创新加速、产业链完善和国产化替代加速的趋势。信创人才培养对于推动产业发展具有重要意义。应加强高校教育、建立人才…

【信息学奥赛】CSP-J/S初赛07 排序算法及其他算法在初赛中的考察

本专栏&#x1f449;CSP-J/S初赛内容主要讲解信息学奥赛的初赛内容&#xff0c;包含计算机基础、初赛常考的C程序和算法以及数据结构&#xff0c;并收集了近年真题以作参考。 如果你想参加信息学奥赛&#xff0c;但之前没有太多C基础&#xff0c;请点击&#x1f449;专栏&#…

C++|海康摄像头实时预览时设置音量大小

使用海康API设置音量的函数是&#xff1a;NET_DVR_OpenSound。 在实际代码中我遇到了以下问题&#xff1a; 1&#xff1a;调用NET_DVR_OpenSound接口一直返回失败&#xff0c;错误是调用顺序出错。 2&#xff1a;音量设置不成功。 对于以上两种问题&#xff0c;我相信很多人…

FineBI在线学习资源-数据处理

FineBI在线学习资源汇总&#xff1a; 学习资源 视频课程 帮助文档 问答 数据处理学习文档&#xff1a; 相关资料&#xff1a; 故事背景概述-https://help.fanruan.com/finebi6.0/doc-view-1789.html 基础表处理-https://help.fanruan.com/finebi6.0/doc-view-1791.html …

六西格玛绿带培训如何告别“走过场”?落地生根

近年来&#xff0c;六西格玛绿带培训已经成为了众多企业提升管理水平和员工技能的重要途径。然而&#xff0c;不少企业在实施六西格玛绿带培训时&#xff0c;往往陷入形式主义的泥潭&#xff0c;导致培训效果大打折扣。那么&#xff0c;如何避免六西格玛绿带培训变成“走过场”…

【重磅】万能模型-直接能换迪丽热巴的模型

万能模型&#xff0c;顾名思义&#xff0c;不用重新训练src&#xff0c;直接可以用的模型&#xff0c;适应大部分原视频脸 模型用法和正常模型一样&#xff0c;但可以跳过训练阶段&#xff01;直接到合成阶段使用该模型 本模型没有做Xseg&#xff0c;对遮挡过多的画面不会自动适…

【C++】 解决 C++ 语言报错:Double Free or Corruption

文章目录 引言 双重释放或内存破坏&#xff08;Double Free or Corruption&#xff09;是 C 编程中常见且严重的内存管理问题。当程序尝试多次释放同一块内存或对已经释放的内存进行操作时&#xff0c;就会导致双重释放或内存破坏错误。这种错误不仅会导致程序崩溃&#xff0c…

谷粒商城学习-07-虚拟机网络设置

文章目录 一&#xff0c;找到配置文件Vagrantfile二&#xff0c;查询虚拟机网卡地址1&#xff0c;查看虚拟机网络配置2&#xff0c;查看宿主机网络配置 三&#xff0c;修改配置文件下的IP配置四&#xff0c;重新启动虚拟机即可生效五&#xff0c;Vagrantfile 的作用1&#xff0…

Java项目:基于SSM框架实现的校园快递代取管理系统【ssm+B/S架构+源码+数据库+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的校园快递代取管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、…

Solo 开发者周刊 (第12期):连接独立开发者,共享开源智慧

这里会整合 Solo 社区每周推广内容、产品模块或活动投稿&#xff0c;每周五发布。在这期周刊中&#xff0c;我们将深入探讨开源软件产品的开发旅程&#xff0c;分享来自一线独立开发者的经验和见解。本杂志开源&#xff0c;欢迎投稿。 产品推荐 1、Soju————一个现代的书签…

【C++】 解决 C++ 语言报错:Undefined Reference

文章目录 引言 未定义引用&#xff08;Undefined Reference&#xff09;是 C 编程中常见的错误之一&#xff0c;通常在链接阶段出现。当编译器无法找到函数或变量的定义时&#xff0c;就会引发未定义引用错误。这种错误会阻止生成可执行文件&#xff0c;影响程序的正常构建。本…

扁鹊三兄弟的启示,探寻系统稳定的秘诀

一、稳定性的重要性 1. 公司收益的角度 从公司收益的视角审视&#xff0c;系统不稳定可能会引发直接损失。例如&#xff0c;当系统突然出现故障导致交易中断时&#xff0c;可能造成交易款项的紊乱、资金的滞留或损失&#xff0c;这不但会阻碍当前交易的顺利完成&#xff0c;还…

长沙(市场调研公司)源点 企业如何决定是否需要开展市场调研?

长沙源点调研咨询认为&#xff1a;对于一个特定问题&#xff0c;管理者在面临几种解决问题的方案时&#xff0c;不应该凭直觉草率开展应用性市场调研。事实上&#xff0c;首先需要做的决策是是否需要开展调研。在下述情况下&#xff0c;最好不要做调研&#xff1a; *缺乏资源。…

【qt】如何获取网卡的信息?

网卡不只一种,有有线的,有无线的等等 我们用QNetworkInterface类的静态函数allInterfaces() 来获取所有的网卡 返回的是一个网卡的容器. 然后我们对每个网卡来获取其设备名称和硬件地址 可以通过静态函数humanReadableName() 来获取设备名称 可以通过静态函数**hardwareAddre…

使用OpenCV对图像进行三角形检测、颜色识别与距离估算【附代码】

文章目录 前言功能概述必要环境一、代码结构1. 参数定义2. 距离估计3. 颜色转换4. 图像处理函数4.1 读取图像和预处理4.2 轮廓检测4.3 过滤面积并检测三角形4.4 提取边框并计算距离 二、效果展示红色三角形绿色三角形蓝色三角形黄色三角形 三、完整代码获取总结 前言 本文将介…

springai+pgvector+ollama实现rag

首先在ollama中安装mofanke/dmeta-embedding-zh:latest。执行ollama run mofanke/dmeta-embedding-zh 。实现将文本转化为向量数据 接着安装pgvector&#xff08;建议使用pgadmin4作为可视化工具&#xff0c;用navicate会出现表不显示的问题&#xff09; 安装好需要的软件后我们…

【Linux进阶】磁盘分区3——目录树,挂载

Linux安装模式下&#xff0c;磁盘分区的选择&#xff08;极重要&#xff09; 在Windows 系统重新安装之前&#xff0c;你可能会事先考虑&#xff0c;到底系统盘C盘要有多大容量&#xff1f;而数据盘D盘又要给多大容量等&#xff0c;然后实际安装的时候&#xff0c;你会发现其实…

CV02_超强数据集:MSCOCO数据集的简单介绍

1.1 简介 MSCOCO数据集&#xff0c;全称为Microsoft Common Objects in Context&#xff0c;是由微软公司在2014年推出并维护的一个大规模的图像数据集&#xff0c;旨在推动计算机视觉领域的研究&#xff0c;尤其是目标识别、目标检测、实例分割、图像描述生成等任务。该数据集…