【Python】基于动态规划和K聚类的彩色图片压缩算法

description

引言

当想要压缩一张彩色图像时,彩色图像通常由数百万个颜色值组成,每个颜色值都由红、绿、蓝三个分量组成。因此,如果我们直接对图像的每个像素进行编码,会导致非常大的数据量。为了减少数据量,我们可以尝试减少颜色的数量,从而降低存储需求。

1.主要原理

(一)颜色聚类(Color Clustering):

首先,使用 KMeans 聚类算法将图像中的颜色值聚类为较少数量的颜色簇。聚类的数量由 n_clusters 参数指定。每个像素被归类到与其最接近的聚类中心所代表的颜色簇。颜色聚类的过程大致如下:

  1. 图像转换: 首先,彩色图像被转换为一个包含所有像素颜色值的数据集。每个像素的颜色通常由红、绿、蓝三个分量组成,因此数据集中的每个样本都是一个三维向量,表示一个像素的颜色。
  2. 选择聚类数量: 在应用 KMeans 算法之前,需要确定聚类的数量。这个数量通常由用户指定,通过参数 n_clusters 控制。
  3. 应用 KMeans 算法: 将 KMeans 算法应用于颜色数据集,将颜色值聚类为指定数量的簇。每个簇的质心代表了该簇的平均颜色。
  4. 像素映射: 每个像素的颜色被映射到最接近的簇的质心所代表的颜色。这样,整个图像被转换为由较少数量的颜色值表示的压缩图像。

通过颜色聚类,彩色图像的颜色数量得以减少,从而实现了数据的压缩。压缩后的图像仍然能够保持视觉上的相似性,同时大大降低了存储空间的需求。

(二)动态规划量化(Dynamic Programming Quantization):

接下来,通过动态规划量化算法对颜色进行压缩。这个算法会进一步减少颜色的数量,并尽可能保持图像的质量。参数 max_colors 指定了压缩后图像中的最大颜色数量。算法会尽量选择与原始图像相似的颜色进行保留,以最大程度地保持图像的质量。而在这部分动态规划量化过程大致如下:

  1. 初始化: 首先,初始化状态数组,表示不同颜色数量下的最优颜色组合。通常,初始状态可以是一个空数组或者包含少量颜色的数组。
  2. 状态转移: 根据动态规划的思想,从初始状态开始逐步扩展,计算每个状态下的最优颜色组合。这个过程通常涉及到对每种可能的颜色组合进行评估,并根据优化准则选择最优的组合。
  3. 选择最优解: 最终,选择最优的颜色组合作为压缩后的图像的颜色集合。这个颜色集合将用于替换原始图像中的颜色,从而实现图像的压缩。
  4. 压缩数据保存: 压缩后的图像数据以及相关信息(如原始图像的尺寸、选择的颜色集合等)被保存为 NumPy 数组,并通过 np.savez_compressed() 函数保存到指定路径。

通过动态规划量化,我们能够选择一组颜色,使得压缩后的图像在尽可能减少颜色数量的情况下,仍然能够保持与原始图像相似的视觉效果。这样就实现了对图像数据的进一步压缩。

(三)压缩数据保存:

压缩后的图像数据以及相关信息(如原始图像的尺寸、聚类数、最大颜色数、聚类中心颜色等)被保存为 NumPy 数组,并通过 np.savez_compressed() 函数保存到指定路径。

(四)解压缩过程:

解压缩过程与压缩过程相反。首先加载压缩后的图像数据,然后根据聚类中心颜色替换像素颜色,最后将重构后的图像数据重塑为原始形状,并恢复图像的原始尺寸。

2.彩色图像压缩类

(一)类结构介绍

将上面所述的一个彩色图像的压缩功能整合为一个名为’ColorfulImageCompressor’的类,在这个类中有四个函数,它们的函数名称、接受参数以及介绍如下:

ColorfulImageCompressor类

  • __init__(self, n_clusters, max_colors, resize_factor=0.5): 初始化彩色图像压缩器对象。
  • compress(self, image_path, compressed_file_path): 压缩彩色图像并保存到指定路径。
  • decompress(self, compressed_file_path): 解压缩彩色图像并返回解压缩后的图像对象。
  • _dynamic_programming_quantization(self, image_array): 动态规划量化,将彩色图像颜色量化为指定数量的颜色。

(二)初始化参数

在创建一个彩色图像压缩类的时候需要传入以下三个参数,进行参数的初始化。

  • n_clusters:聚类数,用于 KMeans 算法,指定图像中的颜色数量。
  • max_colors:最大颜色数,用于动态规划量化,指定压缩后图像中的最大颜色数量。
  • resize_factor:缩放因子,用于调整图像尺寸,默认为 0.5,表示将图像尺寸缩小到原始的一半。

(三)函数介绍

(1)compress(self, image_path, compressed_file_path)
  1. 介绍:
    该函数的作用是压缩彩色图像并保存到指定路径。

  2. 参数:
    image_path:原始图像文件路径。
    compressed_file_path:压缩后的图像文件路径。

  3. 函数体:

    def compress(self, image_path, compressed_file_path):"""压缩彩色图像并保存到指定路径。参数:- image_path:原始图像文件路径。- compressed_file_path:压缩后的图像文件路径。"""# 打开图像并转换为 RGB 模式image = Image.open(image_path)image = image.convert('RGB')# 根据缩放因子调整图像大小new_size = (int(image.width * self.resize_factor), int(image.height * self.resize_factor))image = image.resize(new_size)# 将图像转换为 NumPy 数组并重塑为二维数组np_image = np.array(image)original_shape = np_image.shapenp_image = np_image.reshape(-1, 3)# 使用动态规划量化对图像进行压缩compressed_data = self._dynamic_programming_quantization(np_image)# 保存压缩后的图像数据到指定路径np.savez_compressed(compressed_file_path, np_image=compressed_data['np_image'], original_shape=original_shape, n_clusters=self.n_clusters, max_colors=self.max_colors, center_colors=compressed_data['center_colors'])
(2)decompress(self, compressed_file_path)
  1. 介绍:
    解压缩彩色图像并返回解压缩后的图像对象。
  2. 参数:
    compressed_file_path:压缩后的图像文件路径。
    返回:
    reconstructed_image:解压缩后的图像对象。
  3. 函数体:
    def decompress(self, compressed_file_path):"""解压缩彩色图像并返回解压缩后的图像对象。参数:- compressed_file_path:压缩后的图像文件路径。返回:- reconstructed_image:解压缩后的图像对象。"""# 加载压缩后的图像数据compressed_data = np.load(compressed_file_path)np_image = compressed_data['np_image'].reshape(-1, 3)center_colors = compressed_data['center_colors']# 根据聚类中心替换像素颜色for i in range(self.n_clusters):np_image[np_image[:, 0] == i] = center_colors[i]# 将重构后的图像数据重塑为原始形状original_shape = compressed_data['original_shape']reconstructed_image = np_image.reshape(*original_shape).astype('uint8')reconstructed_image = Image.fromarray(reconstructed_image, 'RGB')# 恢复图像原始尺寸original_size = (int(reconstructed_image.width / self.resize_factor), int(reconstructed_image.height / self.resize_factor))reconstructed_image = reconstructed_image.resize(original_size)return reconstructed_image
(3)_dynamic_programming_quantization(self, image_array)
  1. 介绍:
    动态规划量化,将彩色图像颜色量化为指定数量的颜色。
  2. 参数:
    image_array:图像数据的 NumPy 数组表示。
    返回:
    compressed_data:包含压缩后图像数据及相关信息的字典。
  3. 函数体:
    def _dynamic_programming_quantization(self, image_array):"""动态规划量化,将彩色图像颜色量化为指定数量的颜色。参数:- image_array:图像数据的 NumPy 数组表示。返回:- compressed_data:包含压缩后图像数据及相关信息的字典。"""# 使用 KMeans 进行聚类kmeans = KMeans(n_clusters=self.n_clusters)labels = kmeans.fit_predict(image_array)quantized_image = np.zeros_like(image_array)# 遍历每个聚类簇for i in range(self.n_clusters):# 获取当前簇的像素颜色及其出现次数cluster_pixels = image_array[labels == i]unique_colors, color_counts = np.unique(cluster_pixels, axis=0, return_counts=True)# 选取出现次数最多的前 max_colors 个颜色作为量化后的颜色color_indices = np.argsort(color_counts)[::-1][:self.max_colors]quantized_colors = unique_colors[color_indices]# 计算聚类中像素与量化后颜色的距离distances = np.linalg.norm(cluster_pixels[:, None] - quantized_colors, axis=2)quantized_indices = np.argmin(distances, axis=1)# 使用量化后颜色替换聚类中的像素颜色quantized_image[labels == i] = quantized_colors[quantized_indices]# 存储聚类中心颜色center_colors = kmeans.cluster_centers_.astype('uint8')return {'np_image': quantized_image, 'n_clusters': self.n_clusters, 'max_colors': self.max_colors, 'center_colors': center_colors}

(四)使用说明

# 创建压缩器对象  
compressor = ColorfulImageCompressor(n_clusters=4, max_colors=2, resize_factor=0.5)  # 压缩彩色图像  
image_path = "./img/image2.jpg"  
compressed_file_path = "./npz/compressed_image2_n4_c2.npz"  
compressor.compress(image_path, compressed_file_path)  # 解压缩图像并显示  
reconstructed_image = compressor.decompress(compressed_file_path)  
reconstructed_image.show()  
reconstructed_image.save("./img/reconstructed_image2_n4_c2.jpg")  

3.测试结果

测试图片我们使用的采用的一张818*818分辨率,大小为79.49KB的彩色图片。分别使用不同的聚类数量和颜色数量来进行测试。

descriptiondescription
原始图片聚类数为8,颜色为2的压缩图片

详细运行数据如下表(下面文件名中的n为聚类数,而c为颜色数):

文件名原始大小(KB)压缩后的中间文件大小(KB)解压缩后的图片大小 (KB)
reconstructed_image2_n4_c279.4929.541.7
reconstructed_image2_n4_c479.4949.345.2
reconstructed_image2_n4_c879.4970.951.3
reconstructed_image2_n4_c1679.4994.359.3
reconstructed_image2_n8_c279.4948.348.7
reconstructed_image2_n8_c479.4973.352.5
reconstructed_image2_n8_c879.4910159.1
reconstructed_image2_n8_c1679.4912561.1

结束语

如果有疑问欢迎大家留言讨论,你如果觉得这篇文章对你有帮助可以给我一个免费的赞吗?你们的认可是我最大的分享动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/40105.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis理解【精细】【快速上手】

目录 1. 了解3V和3高 2.什么是redis 3. redis可以做什么 4. Windows安装 5. 使用redis客户端操作redis 5.1 redis基本命令 5.1.1 切换数据库 5.1.2 查看当前数据库的大小 5.1.3 查看当前数据库所有的key ​​​​​​​ 5.1.4 清空当前数据库所有key 5.1.5 清空所…

Element 的 el-table 表格实现单元格合并

html 部分 <template><div class"index-wapper"><el-table :data"tableData" :span-method"objectSpanMethod" border><el-table-column v-for"(item, index) in tableHeader" :key"index" :prop&quo…

Android Studio上传新项目到Gitee

一、在Gitee上创建仓库 首先需要再Gitee上创建仓库 1、在Gitee中新建仓库 2、输入仓库信息 3、生成仓库地址 创建成功会生成一个仓库地址&#xff0c;格式如下&#xff1a; https://gitee.com/test/compose_mvi_demo.git二、Android Studio 上传项目到Gitee 1、在Android …

微信小程序转发朋友圈详细教程

微信小程序转发朋友圈功能&#xff0c;官方说的很官方&#xff0c;容易踩坑 官方链接戳这里 想分享朋友圈必须要分享好友 onShareTimeline() { } 想要生效必须先定义 onShareAppMessage() { } /*** 用户点击右上角分享*/onShareAppMessage() { },onShareTimeline() { } 简单…

一维信号全变分(TV)降噪方法(MATLAB)

信号降噪一直是领域研究的热点&#xff0c;这是一项十分有意义并且极具挑战性的工作&#xff0c;经过几十年来相关科研人员的共同努力&#xff0c;降噪技术得到了极大的发展&#xff0c;并在现实生活中也得到了广泛的应用。其中&#xff0c;许多常用的方法有&#xff1a;小波变…

免费最好用的证件照制作软件,一键换底+老照片修复+图片动漫化,吊打付费!

这款软件真的是阿星用过的&#xff0c;最好用的证件照制作软件&#xff0c;没有之一&#xff01; 我是阿星&#xff0c;今天要给大家安利一款超实用的证件照工具&#xff0c;一键换底&#xff0c;自动排版&#xff0c;免费无广告&#xff0c;让你在家就能轻松搞定证件照&#…

搭建知识付费系统的技术框架与实现路径

知识付费系统已经成为内容创作者和企业变现的重要工具。要成功搭建一个高效、稳定、用户体验良好的知识付费系统&#xff0c;明确技术框架和实现路径至关重要。本文将详细解析搭建知识付费系统的技术框架&#xff0c;并提供具体的实现路径和相关技术代码示例。 一、知识付费系…

测试图片上传功能,使用postman提供的url

是不是有时候想要测试图片上传功能&#xff0c;但是没有后台url进行测试&#xff0c;这时候就可以使用postman提供的url&#xff1a; https://postman-echo.com/post接下来&#xff0c;我将教你在postman中&#xff0c;用该url测试图片上传功能。 1.发送图片上传请求 第一步…

Character.ai因内容审查流失大量用户、马斯克:Grok-3用了10万块英伟达H100芯片

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 更多资源欢迎关注 1、爆火AI惨遭阉割&#xff0c;1600万美国年轻人失恋&#xff1f;Character.ai被爆资金断裂 美国流行的社交软件Character.ai近期对模型进行大幅度内容审查&#xff0c;导致用户感到失望并开始流失。…

12. Revit API: Document、Element

12. Revit API: Document、Element 前言 还是先讲一下Document吧&#xff0c;不然Selection不好讲&#xff0c;那涉及到了挺多东西的&#xff0c;比元素&#xff08;Element&#xff09;和各类Filter&#xff0c;这些都与Document有关&#xff0c;所以先简单讲一下这个。 一、…

Chart.js四个示例

示例代码在图片后面&#xff0c;点赞加关注&#xff0c;谢谢 条形图 雷达图 折线图 圆环图 完整例子代码 具体代码在干什么看粗体加重的注释 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <me…

C++精解【10】

文章目录 读写文件概述example csv读文件读取每个字段读取机器学习数据库iris constexpr函数GMP大整数codeblock环境配置数据类型函数类 EigenminCoeff 和maxCoeffArray类 读写文件 概述 fstream typedef basic_fstream<char, char_traits<char>> fstream;此类型…

【大数据】什么是数据融合(Data Fusion)?

目录 一、数据融合的定义 二、数据融合的类型 三、数据融合的挑战 四、数据融合的方法 五、数据融合的关键环节 1.数据质量监控指标的制定和跟踪 2.异常检测和处理机制 3.实时数据监测与反馈机制 4.协同合作与知识共享 一、数据融合的定义 数据融合&#xff08;Data Fusion&…

STM32基本定时器、通用定时器、高级定时器区别

一.STM32基本定时器、通用定时器、高级定时器区别 STM32系列微控制器中的定时器资源分为基本定时器&#xff08;Basic Timer&#xff09;、通用定时器&#xff08;General Purpose Timer&#xff09;和高级定时器&#xff08;Advanced Timer&#xff09;三类&#xff0c;它们在…

PyCharm远程开发配置(2024以下版本)

目录 PyCharm远程开发配置 1、清理远程环境 1.1 点击Setting 1.2 进入Interpreter 1.3 删除远程环境 1.4 删除SSH 2、连接远程环境 2.1 点击Close Project 2.2 点击New Project 2.3 项目路径设置 2.4 SSH配置 2.5 选择python3解释器在远程环境的位置 2.6 配置远程…

C++ 现代教程二

线程支持库 - C中文 - API参考文档 GitHub - microsoft/GSL: Guidelines Support Library Fluent C&#xff1a;奇异递归模板模式&#xff08;CRTP&#xff09; - 简书 #include <thread> #include <iostream> #include <unordered_map> #include <futu…

区块链加载解析方法

一.区块链加载解析 对于数据的下载主要包括三种方式&#xff1a; 1.实现比特币网络协议&#xff0c;通过该协议和其他比特币全节点建立联系&#xff0c;然后同步区块数据。 2.通过比特币节点提供的API服务下载区块链数据。 3.通过blickchain.com提供的rest服务下载区块数据…

《后端程序猿 · Caffeine 本地缓存》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻一周&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

EE架构大跃进:特斯拉、小鹏引领舱驾融合,从域控融合走向单SoC

作者 |肖恩 编辑 |德新 智能汽车发展到今天&#xff0c;整车电气架构已经从分布式架构逐渐迈向中央集成式架构&#xff0c;传统的小控制器被集成到按功能划分的大域控里&#xff0c;下一个阶段将是跨域的融合&#xff0c;通过不同功能域的集成实现中央计算平台的最终目标。 …

Visual Studio 中的键盘快捷方式

1. Visual Studio 中的键盘快捷方式 1.1. 可打印快捷方式备忘单 1.2. Visual Studio 的常用键盘快捷方式 本部分中的所有快捷方式都将全局应用&#xff08;除非另有指定&#xff09;。 “全局”上下文表示该快捷方式适用于 Visual Studio 中的任何工具窗口。 生成&#xff1…