【YOLOv5/v7改进系列】更换损失函数为CIOU、GIOU、SIOU、DIOU、EIOU、WIOUv1/v2/v3、Focal C/G/S/D/EIOU等

一、导言

在目标检测任务中,损失函数的主要作用是衡量模型预测的边界框(bounding boxes)与真实边界框之间的匹配程度,并指导模型学习如何更精确地定位和分类目标。损失函数通常由两部分构成:分类损失(用于判断物体属于哪个类别)和回归损失(用于调整预测边界框的位置和尺寸以更好地匹配真实目标)。一个好的损失函数能够帮助模型快速且准确地收敛,提高检测性能。

二、YOLO训练中常见且有效的损失函数
1.SIOU (Sum of Intersection over Union)

SIOU不是一个广泛认可的术语,但若假设这是对某种综合IoU概念的提及,其潜在的优点可能在于尝试结合不同IoU变体的优势,比如同时考虑重叠区域、最小外包矩形、中心点距离等,以提供一个更全面的评估标准,可能在某些特定场景下提升检测精度。

2.EIOU (Enhanced Intersection over Union)

EIOU是对IOU的一个增强版本,旨在进一步提升回归损失的效果。它可能通过额外考虑边界框尺寸、形状或位置关系的度量,以更精细地引导边界框的调整。EIOU的优点在于它能更有效地处理极端情况,如极度倾斜或部分重叠的目标,从而提高检测的鲁棒性和准确性。

3.DIOU (Distance Intersection over Union)

DIOU在传统IOU的基础上,加入了两个边界框中心点之间的欧几里得距离,这有助于直接最小化预测框与真实框之间的距离,加快了收敛速度并改善了对密集对象和极端长宽比目标的检测效果。其优点包括减少重叠区域之外的定位误差,尤其在处理重叠少或无重叠情况时更为有效。

4.GIOU (Generalized Intersection over Union)

GIOU解决了IOU无法惩罚预测框未能完全覆盖真实框的问题,通过计算预测框与真实框的最小外包矩形与它们交集的比值,促使预测框不仅尽可能重叠,而且形状和大小也要更加接近真实框。GIOU的优点在于能有效引导框的扩展,尤其是在目标被严重遮挡或仅部分可见时,提升检测的完整性。

5.CIOU (Complete Intersection over Union)

CIOU在GIOU的基础上,进一步加入了边界框中心点距离的惩罚项以及对宽高比的约束,形成了一个更为全面的损失函数。它不仅优化了重叠区域的测量,还解决了边界框尺寸不一致的问题,从而在各种复杂场景下都能提供稳定的性能提升。CIOU的优点在于它是目前较为全面的回归损失函数,能够综合考虑重叠、中心点距离和宽高比,提高了检测的准确性和效率。

这些改进的IoU损失函数都是为了克服传统IOU作为损失函数时存在的局限性,如只关注重叠区域而不考虑位置偏差或形状不匹配的问题,通过不断地优化,这些新提出的损失函数使得目标检测系统的性能得到了显著提升。

三、YOLOv7-tiny改进工作

了解二后,打开YOLOv7项目文件下的utils文件夹下的general.py,搜索def bbox_iou定位到如下行,

替换如下代码为

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索class ComputeLossOTA定位到如下行:

替换ComputeLossOTA下的该两行为如下代码

                iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

四、YOLOv7改进工作

 了解二后,打开YOLOv7项目文件下的utils文件夹下的general.py,搜索def bbox_iou定位到如下行,

替换如下代码为

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索class ComputeLoss:定位到如下行:

 

替换该两行为如下代码

                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

五、YOLOv5改进工作

了解二后,打开YOLOv5项目文件下的utils文件夹下的metrics.py,搜索def bbox_iou定位到如下行,

将该函数替换为如下代码

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False  # (false为v3,true为v2,none为v1)_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False,Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter / (union + eps), alpha)  # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter / (union + eps),gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),gamma)  # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter / (union + eps), gamma)  # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou  # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2))  # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter / (union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

打开utils文件夹下的loss.py,搜索ciou

替换该两行为

                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, WIoU=True, scale=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True)  # iou(prediction, target)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, DIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, EIoU=True, Focal=True)#iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, GIoU=True, Focal=True)if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (iou[0] * iou[1]).mean()iou = iou[-1]else:lbox += (1.0 - iou).mean()  # iou loss

使用时,取消掉不要的注释即可(如base是CIOU,你想使用SIOU,注释掉CIOU这行,SIOU那行取消注释即可)。

六、一些注意的点

采用WIOU进行训练时,默认采用的是WIOUv3

想要训练WIOUv1、v2时将该行改为none、true即可。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我的世界服务器-高版本服务器-MC服务器-生存服务器-RPG服务器-幻世星辰

生存为主,RPG乐趣为辅,重视每位玩家的建议,一起打造心目中的服务器,与小伙伴一起探险我的世界! 服务器版本: 1.18.2 ~ 1.20.4 Q群: 338238381 服务器官网: 星辰毛毛雨-Minecraft高版本生存服务器我的世界…

springboot是否可以代替spring

Spring Boot不能直接代替Spring,但它是Spring框架的一个扩展和增强,提供了更加便捷和高效的开发体验。以下是关于Spring Boot和Spring关系的详细解释: Spring框架: Spring是一个广泛应用的开源Java框架,提供了一系列模…

EDI是什么?与ERP有何关系

EDI的发展过程 电子数据交换(Electronic Data Interchange,EDI)是一种通过电子方式传输商业文件的技术。EDI的历史可以追溯到20世纪60年代,当时企业开始使用计算机进行数据处理。最早的EDI系统是为解决大型企业间的信息交换问题而…

nccl 04 nvidia 官方小程序

1,代码重新编辑 为了地毯式地检查结果的正确性,这里修改了代码 主要步骤为 step1: data_p指向的空间中,分别生成随机数; step2: 分别拷贝到gpu的sendbuff的显存中; step3: 通过nccl_all_reduce sum;…

上海市计算机学会竞赛平台2023年6月月赛丙组选取子段(二)

题目描述 给定一个长度为𝑛n的序列 𝑎1,𝑎2,...,𝑎𝑛a1​,a2​,...,an​ ,请问多少种方案,能够从中选取一个连续段,使得该子段内所有元素的值都相同? 输入格式 输入共…

掌握 Python 中 isinstance 的正确用法

👋 简介 isinstance() 函数用于判断一个对象是否是一个特定类型或者在继承链中是否是特定类型的实例。它常用于确保函数接收到的参数类型是预期的。 📖 正文 1 语法 isinstance(object, classinfo) object参数是要检查的对象;classinfo参数…

fifio中wr_ack信号及其用途

Vivado中FIFO IP核的wr_ack信号及其用途。 wr_ack(写确认)信号的作用: 功能: wr_ack是一个输出信号,用于指示写操作已被FIFO成功接受。当FIFO成功接收并存储了一个数据项时,它会激活wr_ack信号一个时钟周期…

【SpringBoot循环依赖】解决循环依赖

我的项目中,报错: Description:The dependencies of some of the beans in the application context form a cycle:frontIndexController ┌─────┐ | systemConfigService └─────┘Action:Relying upon circular references is discourage…

ingress-nginx部署-helm方式

helm 安装ingress-nginx Ingress-Nginx Controller 支持多种方式安装: 使用heml安装chart使用kubectl apply,使用YAML文件; 详情可参考:https://kubernetes.github.io/ingress-nginx/deploy/ 本文实践使用helm安装ingress-ngi…

【工具推荐】ONLYOFFICE8.1版本编辑器测评——时下的办公利器

文章目录 一、产品介绍1. ONLYOFFICE 8.1简介2. 多元化多功能的编辑器 二、产品体验1. 云端协作空间2. 桌面编辑器本地版 三、产品界面设计1. 本地版本2. 云端版本 四、产品文档处理1. 文本文档(Word)2. 电子表格(Excel)3. PDF表单&#xff0…

如何学习MyBatis 源码

MyBatis 源码分析是一个深入的话题,涉及到框架的内部实现细节。下面是一些基本介绍和指导: 整体认识 MyBatis 源码结构 核心模块:MyBatis 的核心模块包括 Configuration、Executor、StatementHandler、ParameterHandler、ResultSetHandler 等…

【C++ | 继承】|概念、方式、特性、作用域、6类默认函数

继承 1.继承的概念与定义2.继承的方式2.1继承基本特性2.2继承的作用域2.2.1隐藏赋值兼容 派生类的创建和销毁构造函数拷贝构造赋值重载 1.继承的概念与定义 继承是面向对象编程中的一个重要概念。它的由来可以追溯到软件开发中的模块化设计和代码复用的需求。 在软件开发过程…

mq消息堆积

通常情况下,出现消息积压的原因有 mq消费者挂了mq生产者生产消息的速度,大于mq消费者消费消息的速度 当数据量不大时,优化消费者处理逻辑 通过在代码中增加了一些日志,把mq消费者中各个关键节点的耗时都打印出来,发现有…

从零搭建Java酒店预订系统:实战指南_02

第四步,用户注册和登录 创建用户服务接口 在src/main/java目录下创建com.example.hotelbookingsystem.service包,并在该包下创建UserService接口: package com.example.hotelbookingsystem.service;import com.example.hotelbookingsystem.entity.User;public int…

【Android面试八股文】性能优化相关面试题: 什么是内存抖动?什么是内存泄漏?

文章目录 一、什么是内存抖动?内存抖动的问题卡顿OOM(Out Of Memory)二、什么是内存泄漏(Memory Leak)?引用计数法可达性分析法一、什么是内存抖动? 在Java中,每创建一个对象,就会申请一块内存,存储对象信息; 每分配一块内存,程序的可用内存也就少一块; 当程序…

电池企业如何通过部署PLM系统提升自身竞争力

产品生命周期管理(PLM,Product Lifecycle Management)是一种集成的企业信息化管理解决方案,旨在管理产品从概念设计、研发、生产、使用到退役的整个生命周期。PLM系统通过信息化手段,将企业的各个环节紧密连接在一起&a…

中英双语介绍美国的州:佛罗里达州(Florida)

中文版 佛罗里达州(Florida)位于美国东南部,因其温暖的气候、丰富的旅游资源和多样化的文化背景而闻名。以下是对佛罗里达州各方面的详细介绍: 人口 截至2020年,美国人口普查数据显示,佛罗里达州的人口约…

什么是协程?协程和线程的区别

文章目录 前置知识应用程序和内核阻塞和非阻塞同步和异步并发和并行IO 发展历史同步编程异步多线程/进程异步消息 回调函数(响应式编程) 协程协程基本概念go 示例代码协程和线程的区别 个人简介 前置知识 在了解协程前,我们先理解一些相关的…

强化学习原理入门-1绪论

1 绪论 1.1 这是一本什么书 强化学习算法? AlphaGo大胜世界围棋冠军李世石和柯洁事件,核心算法就用到了强化学习算法。 1.2 强化学习解决什么问题 案例1 非线性系统二级倒立摆 案例2 AlphaGo与柯洁的第二局棋 案例3 机器人学习站立 ...... 智能…