在说机器学习设计模式之前,想多说几句,在进入软件行业最初的10年,那时候耳熟能详的基本就是多线程编程,互斥同步锁,设计模式,OOA,OOP,常规数组,tree,图的数据结构及相关网络编程等。那时高等数学总觉得没有太多用武之地,慢慢的开始了解机器学习,你会发现数学在机器学习中占有举足轻重的地位。数学好的人,机器学习上手非常快,并且你不会浮于表面,只会那些所谓的 fine tune,我不是说 fine tune不重要,这件事肯定要做,只是现阶段是人工来完成,但未来 fine tune 这种事 迟早会被机器替代。因为机器学习后阶段人工fine tune会逐步消失,取而代之的是机器的全自动校正完成。但如果你有深厚的数学功底,你将是创建模型或改造模型的人,你将真正凌驾在machine learning 之上。
举个例子,如果你有很深的微积分造诣,那么你理解神经网络中的梯度下降,损失函数的构建及训练,调优等过程,你会轻车熟路,在较短时间内完美驾驭。如果你有较深的线性代数造诣,理解卷积神经网络,CNN, RNN,LSTM,GRU或者是Attention等transformer 机制,你会比别人更胜一筹。如果你有较好的概率论相关know-how,你将对softmax 等输出,损失函数等有很好的理解。当然我说的都是比较基础的理解部分。你甚至可以创建基于自己的super data AI model,这些idea或专利的源泉大部分来自你较好的数学功底,所以,如果你想在机器学习中有较好的可持续发展,Math is very important.
下面还是说干货,AI的设计模式。 Andrew Ng 在人工智能峰会(AI Ascent)上发表了《Agentic Reasoning》的演讲。虽然时间不长,但information 很多。主要包括反思、工具调用、规划和多智能体协作4种设计模式,你会发现AI的模式和人类的思考维度越来越接近,作为工作或生活中人类经常使用的PDCA模式在AI中得到了极致体现,同时已能印证我前面说的人工 fine tune迟早会被终结。
Zero-shot Prompting VS Agentic Workflow
在当下,不论是国外的AI工具如ChatGPT、Claude、谷歌的Gemini,还是国内的Kimi、通义千问和文心一言,我们大多数人的使用方式还是以“zero-shot prompt”直接对话的形式,也就是我们直接抛给ChatGPT一个问题,比如“写一篇关于xx主题的论文”,让它一次性给出回复。在这个过程中,LLM模型只会执行“生成”这一个动作。
然而,这与我们在真实世界中完成工作任务的流程是截然不同的。还是以写论文为例,一般我们会起草一个初稿,然后评估、分析、修订,迭代出第二、第三个版本,直到我们满意为止。其他工作和学习任务也是如此,我们通常会将其分解为一个一个的流程,然后按照流程来操作,以保证结果的质量。LLM模型也理应如此为我们服务。
Agentic Workflow赋能LLM模型
吴恩达教授的团队对“Zero-shot prompting”以及添加了不同设计模式的AI Agent的表现做了数据分析和对比,详情如下图。图中的纵坐标分别表示基座模型是GPT-3.5和GPT-4,横坐标表示在“Coding benchmark”下各模型/Agent的正确率(表现),百分比越高表现越好。
- Zero-shot模式:
- GPT-3.5的Zero-shot性能为48%。
- GPT-4的Zero-shot性能显著提升,为67%。
- 结论:Zero-shot模式下,模型在没有具体任务示例的情况下,仅依赖于其预训练的知识来执行任务。这种情况下比拼的是模型的通用基础能力,可以理解为模型的“智商”,GPT-4表现好是意料之中的。
- AI Agent(智能体)模式:
- Reflection反馈模式通过模型自身的反思与调整来改进任务执行。
- Tool Use工具调用模式涉及模型调用外部工具或库来帮助解决任务。
- Planning规划模式通过提前计划和组织任务步骤来提高效率和准确性。
- Multiagent多智能体协作模式涉及多个智能体的协同工作,以提高整体任务执行能力。
- 结论1:添加了Agentic Workflow的AI Agent在任务执行中的表现显著提升,不论基座模型是GPT-3.5还是GPT-4。
- 结论2:即使基座模型是GPT-3.5,通过添加Agentic Workflow将其设计为AI Agent后,性能表现也超过了Zero-shot模式下的GPT-4!
其实这种结论也很好理解,对于一项工作或学习任务来说,光有“智商”是不足以保证任务完成质量的,更重要的,与如何完成这项任务的方式方法有关系。“智商”(即大脑,LLM模型)可能起到一定作用,但合理的规划,完善的流程设计在后期任务执行过程中也起到关键的作用,虽然这常常被我们忽略。
1. 反馈(Reflection)
反馈(Reflection)设计模式是一种让AI模型通过自我反思和迭代改进来提高任务执行能力的方法。在这种模式中,模型不仅生成初始解决方案,还会通过多次反馈和修改,不断优化其输出。
在Andrew Ng 提到的例子中,任务是编写代码,模型首先生成初始版本,然后通过多次反馈和修改生成更优化的版本。例如,初始代码版本存在错误,模型通过反馈指出错误并进行修正,最终生成一个通过所有测试的版本。
2. 工具调用(Tool Use)
工具调用(Tool Use)设计模式是一种让AI模型通过调用外部工具或库来增强任务执行能力的方法。在这种模式中,模型并不仅仅依赖于自身的知识和能力,而是利用各种外部资源来完成任务,从而提高效率和准确性。
实际我前面写的 RAG与LLM 专栏 就是一个在LLM领域下 Tool Use 的应用,有兴趣可以取读一读,还在持续更新中。
3. 规划(Planning)
规划(Planning)设计模式是一种通过提前计划和组织任务步骤来提高效率和准确性的方法。在这种模式中,模型将复杂任务分解为多个步骤,并依次执行每个步骤,以达到预期的目标。
这和管理者经常使用的PDCA是何其相似,plan-do-check-action 直至目标完成,其中也包含了 fine tune 的逻辑。
4. 多智能体协作(Multi-agent Collaboration)
多智能体协作(Multiagent Collaboration)设计模式是一种通过多个智能体之间的合作来提高任务执行效率和准确性的方法。在这种模式中,多个智能体分担任务,并通过相互交流和协作,共同完成复杂任务。
实际上与 3 规划有一些联系,比如:
开发一个五子棋游戏。
- 设计阶段:一个智能体负责游戏的设计,包括界面和规则。
- 编码阶段:另一个智能体负责游戏的编码,实现核心功能。
- 测试阶段:第三个智能体负责测试游戏,找出并修复错误。
- 文档编写阶段:第四个智能体负责编写游戏的使用文档和说明。
通过智能体之间的分工合作,最终成功开发出一个完整的五子棋游戏。
就先写到这里吧