C++精解【9】

文章目录

  • 大整数GMP
    • 概述
      • GMP
      • 安装 [cygwin](https://cygwin.com/install.html)
      • 安装 gmp
      • example
  • Eigen
    • 基本属性和运算

大整数GMP

概述

GMP

GMP是一个用于任意精度算术的免费库,可对有符号整数、有理数和浮点数进行操作。除了运行GMP的机器的可用内存所暗示的精度外,没有实际的限制。GMP具有丰富的功能集,各功能具有规则的接口。

GMP的主要目标应用是密码学应用与研究、互联网安全应用、代数系统、计算代数研究等。

GMP被精心设计为尽可能快,无论是小操作数还是大操作数。速度是通过使用全字作为基本算术类型,通过使用快速算法,为许多cpu最常见的内循环使用高度优化的汇编代码,以及对速度的总体强调来实现的。

第一个GMP版本于1991年发布。它被不断地开发和维护,大约每年发布一次新版本。

安装 cygwin

下面系列必须安装
1.gcc-core,gcc-g++,mingw-w64-gcc-core,mingw-w64-gcc-c++
2.m4,make

安装 gmp

$ ./configure --enable-cxx
make
make install
  • gmp编译选项

–prefix and --exec-prefix

The --prefix option can be used in the normal way to direct GMP to install under a particular tree. The default is ‘/usr/local’.--exec-prefix can be used to direct architecture-dependent files like libgmp.a to a different location. This can be used to share

architecture-independent parts like the documentation, but separate
the dependent parts. Note however that gmp.h is architecture-dependent
since it encodes certain aspects of libgmp, so it will be necessary to
ensure both $prefix/include and $exec_prefix/include are available to
the compiler.
–disable-shared, --disable-static

By default both shared and static libraries are built (where possible), but one or other can be disabled. Shared libraries result

in smaller executables and permit code sharing between separate
running processes, but on some CPUs are slightly slower, having a
small cost on each function call. Native Compilation,
–build=CPU-VENDOR-OS

For normal native compilation, the system can be specified with ‘--build’. By default ‘./configure’ uses the output from running

‘./config.guess’. On some systems ‘./config.guess’ can determine the
exact CPU type, on others it will be necessary to give it explicitly.
For example,

./configure --build=ultrasparc-sun-solaris2.7In all cases the ‘OS’ part is important, since it controls how libtool generates shared libraries. Running ‘./config.guess’ is the

simplest way to see what it should be, if you don’t know already.
Cross Compilation, --host=CPU-VENDOR-OS

When cross-compiling, the system used for compiling is given by ‘--build’ and the system where the library will run is given by

‘–host’. For example when using a FreeBSD Athlon system to build
GNU/Linux m68k binaries,

./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnuCompiler tools are sought first with the host system type as a prefix. For example m68k-mac-linux-gnu-ranlib is tried, then plain

ranlib. This makes it possible for a set of cross-compiling tools to
co-exist with native tools. The prefix is the argument to ‘–host’,
and this can be an alias, such as ‘m68k-linux’. But note that tools
don’t have to be set up this way, it’s enough to just have a PATH with
a suitable cross-compiling cc etc.

Compiling for a different CPU in the same family as the build system is a form of cross-compilation, though very possibly this would

merely be special options on a native compiler. In any case
‘./configure’ avoids depending on being able to run code on the build
system, which is important when creating binaries for a newer CPU
since they very possibly won’t run on the build system.

In all cases the compiler must be able to produce an executable (of whatever format) from a standard C main. Although only object

files will go to make up libgmp, ‘./configure’ uses linking tests for
various purposes, such as determining what functions are available on
the host system.

Currently a warning is given unless an explicit ‘--build’ is used when cross-compiling, because it may not be possible to correctly

guess the build system type if the PATH has only a cross-compiling cc.

Note that the ‘--target’ option is not appropriate for GMP. It’s for use when building compiler tools, with ‘--host’ being where they

will run, and ‘–target’ what they’ll produce code for. Ordinary
programs or libraries like GMP are only interested in the ‘–host’
part, being where they’ll run. (Some past versions of GMP used
‘–target’ incorrectly.) CPU types

In general, if you want a library that runs as fast as possible, you should configure GMP for the exact CPU type your system uses.

However, this may mean the binaries won’t run on older members of the
family, and might run slower on other members, older or newer. The
best idea is always to build GMP for the exact machine type you intend
to run it on.

The following CPUs have specific support. See configure.ac for details of what code and compiler options they select.Alpha: ‘alpha’, ‘alphaev5’, ‘alphaev56’, ‘alphapca56’, ‘alphapca57’, ‘alphaev6’, ‘alphaev67’, ‘alphaev68’, ‘alphaev7’Cray: ‘c90’, ‘j90’, ‘t90’, ‘sv1’HPPA: ‘hppa1.0’, ‘hppa1.1’, ‘hppa2.0’, ‘hppa2.0n’, ‘hppa2.0w’, ‘hppa64’IA-64: ‘ia64’, ‘itanium’, ‘itanium2’MIPS: ‘mips’, ‘mips3’, ‘mips64’Motorola: ‘m68k’, ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ‘m68040’, ‘m68060’, ‘m68302’, ‘m68360’, ‘m88k’, ‘m88110’POWER: ‘power’, ‘power1’, ‘power2’, ‘power2sc’PowerPC: ‘powerpc’, ‘powerpc64’, ‘powerpc401’, ‘powerpc403’, ‘powerpc405’, ‘powerpc505’, ‘powerpc601’, ‘powerpc602’, ‘powerpc603’,

‘powerpc603e’, ‘powerpc604’, ‘powerpc604e’, ‘powerpc620’,
‘powerpc630’, ‘powerpc740’, ‘powerpc7400’, ‘powerpc7450’,
‘powerpc750’, ‘powerpc801’, ‘powerpc821’, ‘powerpc823’, ‘powerpc860’,
‘powerpc970’
SPARC: ‘sparc’, ‘sparcv8’, ‘microsparc’, ‘supersparc’, ‘sparcv9’, ‘ultrasparc’, ‘ultrasparc2’, ‘ultrasparc2i’, ‘ultrasparc3’,
‘sparc64’
x86 family: ‘i386’, ‘i486’, ‘i586’, ‘pentium’, ‘pentiummmx’, ‘pentiumpro’, ‘pentium2’, ‘pentium3’, ‘pentium4’, ‘k6’, ‘k62’, ‘k63’,
‘athlon’, ‘amd64’, ‘viac3’, ‘viac32’
Other: ‘arm’, ‘sh’, ‘sh2’, ‘vax’,

CPUs not listed will use generic C code. Generic C BuildIf some of the assembly code causes problems, or if otherwise desired, the generic C code can be selected with the configure

–disable-assembly.

Note that this will run quite slowly, but it should be portable and should at least make it possible to get something running if all

else fails. Fat binary, --enable-fat

Using --enable-fat selects a “fat binary” build on x86, where optimized low level subroutines are chosen at runtime according to the

CPU detected. This means more code, but gives good performance on all
x86 chips. (This option might become available for more architectures
in the future.) ABI

On some systems GMP supports multiple ABIs (application binary interfaces), meaning data type sizes and calling conventions. By

default GMP chooses the best ABI available, but a particular ABI can
be selected. For example

./configure --host=mips64-sgi-irix6 ABI=n32See ABI and ISA, for the available choices on relevant CPUs, and what applications need to do. CC, CFLAGSBy default the C compiler used is chosen from among some likely candidates, with gcc normally preferred if it’s present. The usual

‘CC=whatever’ can be passed to ‘./configure’ to choose something
different.

For various systems, default compiler flags are set based on the CPU and compiler. The usual ‘CFLAGS="-whatever"’ can be passed to

‘./configure’ to use something different or to set good flags for
systems GMP doesn’t otherwise know.

The ‘CC’ and ‘CFLAGS’ used are printed during ‘./configure’, and can be found in each generated Makefile. This is the easiest way to

check the defaults when considering changing or adding something.

Note that when ‘CC’ and ‘CFLAGS’ are specified on a system supporting multiple ABIs it’s important to give an explicit

‘ABI=whatever’, since GMP can’t determine the ABI just from the flags
and won’t be able to select the correct assembly code.

If just ‘CC’ is selected then normal default ‘CFLAGS’ for that compiler will be used (if GMP recognises it). For example ‘CC=gcc’ can

be used to force the use of GCC, with default flags (and default ABI).
CPPFLAGS

Any flags like ‘-D’ defines or ‘-I’ includes required by the preprocessor should be set in ‘CPPFLAGS’ rather than ‘CFLAGS’.

Compiling is done with both ‘CPPFLAGS’ and ‘CFLAGS’, but preprocessing
uses just ‘CPPFLAGS’. This distinction is because most preprocessors
won’t accept all the flags the compiler does. Preprocessing is done
separately in some configure tests. CC_FOR_BUILD

Some build-time programs are compiled and run to generate host-specific data tables. ‘CC_FOR_BUILD’ is the compiler used for

this. It doesn’t need to be in any particular ABI or mode, it merely
needs to generate executables that can run. The default is to try the
selected ‘CC’ and some likely candidates such as ‘cc’ and ‘gcc’,
looking for something that works.

No flags are used with ‘CC_FOR_BUILD’ because a simple invocation like ‘cc foo.c’ should be enough. If some particular options are

required they can be included as for instance ‘CC_FOR_BUILD=“cc
-whatever”’. C++ Support, --enable-cxx

C++ support in GMP can be enabled with ‘--enable-cxx’, in which case a C++ compiler will be required. As a convenience

‘–enable-cxx=detect’ can be used to enable C++ support only if a
compiler can be found. The C++ support consists of a library
libgmpxx.la and header file gmpxx.h (see Headers and Libraries).

A separate libgmpxx.la has been adopted rather than having C++ objects within libgmp.la in order to ensure dynamic linked C programs

aren’t bloated by a dependency on the C++ standard library, and to
avoid any chance that the C++ compiler could be required when linking
plain C programs.

libgmpxx.la will use certain internals from libgmp.la and can only be expected to work with libgmp.la from the same GMP version. Future

changes to the relevant internals will be accompanied by renaming, so
a mismatch will cause unresolved symbols rather than perhaps
mysterious misbehaviour.

In general libgmpxx.la will be usable only with the C++ compiler that built it, since name mangling and runtime support are usually

incompatible between different compilers. CXX, CXXFLAGS

When C++ support is enabled, the C++ compiler and its flags can be set with variables ‘CXX’ and ‘CXXFLAGS’ in the usual way. The default

for ‘CXX’ is the first compiler that works from a list of likely
candidates, with g++ normally preferred when available. The default
for ‘CXXFLAGS’ is to try ‘CFLAGS’, ‘CFLAGS’ without ‘-g’, then for g++
either ‘-g -O2’ or ‘-O2’, or for other compilers ‘-g’ or nothing.
Trying ‘CFLAGS’ this way is convenient when using ‘gcc’ and ‘g++’
together, since the flags for ‘gcc’ will usually suit ‘g++’.

It’s important that the C and C++ compilers match, meaning their startup and runtime support routines are compatible and that they

generate code in the same ABI (if there’s a choice of ABIs on the
system). ‘./configure’ isn’t currently able to check these things very
well itself, so for that reason ‘–disable-cxx’ is the default, to
avoid a build failure due to a compiler mismatch. Perhaps this will
change in the future.

Incidentally, it’s normally not good enough to set ‘CXX’ to the same as ‘CC’. Although gcc for instance recognises foo.cc as C++ code,

only g++ will invoke the linker the right way when building an
executable or shared library from C++ object files. Temporary Memory,
–enable-alloca=

GMP allocates temporary workspace using one of the following three methods, which can be selected with for instance

‘–enable-alloca=malloc-reentrant’.

    ‘alloca’ - C library or compiler builtin.‘malloc-reentrant’ - the heap, in a re-entrant fashion.‘malloc-notreentrant’ - the heap, with global variables. For convenience, the following choices are also available. ‘--disable-alloca’ is the same as ‘no’.‘yes’ - a synonym for ‘alloca’.‘no’ - a synonym for ‘malloc-reentrant’.‘reentrant’ - alloca if available, otherwise ‘malloc-reentrant’. This is the default.‘notreentrant’ - alloca if available, otherwise ‘malloc-notreentrant’. alloca is reentrant and fast, and is recommended. It actually allocates just small blocks on the stack; larger ones use

malloc-reentrant.

‘malloc-reentrant’ is, as the name suggests, reentrant and thread safe, but ‘malloc-notreentrant’ is faster and should be used if

reentrancy is not required.

The two malloc methods in fact use the memory allocation functions selected by mp_set_memory_functions, these being malloc and friends by

default. See Custom Allocation.

An additional choice ‘--enable-alloca=debug’ is available, to help when debugging memory related problems (see Debugging). FFT

Multiplication, --disable-fft

By default multiplications are done using Karatsuba, 3-way Toom, higher degree Toom, and Fermat FFT. The FFT is only used on large to

very large operands and can be disabled to save code size if desired.
Assertion Checking, --enable-assert

This option enables some consistency checking within the library. This can be of use while debugging, see Debugging. Execution

Profiling, --enable-profiling=prof/gprof/instrument

Enable profiling support, in one of various styles, see Profiling. MPN_PATHVarious assembly versions of each mpn subroutines are provided. For a given CPU, a search is made through a path to choose a version

of each. For example ‘sparcv8’ has

MPN_PATH="sparc32/v8 sparc32 generic"which means look first for v8 code, then plain sparc32 (which is v7), and finally fall back on generic C. Knowledgeable users with

special requirements can specify a different path. Normally this is
completely unnecessary.

example

$ g++ main.cpp -lgmpxx -lgmp -I/cygdrive/d/gmp-6.3.0 -L/cygdrive/d/gmp-6.3.0/.libs

在这里插入图片描述

#include <iostream>
#include "gmp.h"
using namespace std;
int main()
{mpz_t a, b, c;mpz_init(a);mpz_init(b);mpz_init(c);mpz_set_str(a, "34624532532450994252345856747", 10);mpz_set_str(b, "23450234958877723495090425432", 10);mpz_add(c, a, b);gmp_printf("%Zd+%Zd=%Zd\n", a,b,c);mpz_clear(a);mpz_clear(b);mpz_clear(c);return 0;
}

Eigen

基本属性和运算

  • 代码
#include <iostream>
#include "e:/eigen/Eigen/Dense"
using namespace std;
int main()
{Eigen::Matrix2d mat;mat << 10, 20,30, 40;cout << "Here is mat.sum():       " << mat.sum()       << endl;cout << "Here is mat.prod():      " << mat.prod()      << endl;cout << "Here is mat.mean():      " << mat.mean()      << endl;cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl;cout << "Here is mat.trace():     " << mat.trace()     << endl;
}
  • 函数功能
    sum():求元素之和
    prod() :求元素之积
    prod() :求元素平均值
    minCoeff() :最小元素
    maxCoeff() :最大元素
    trace() : the sum of the coefficients on the main diagonal.主对角线之和
  • 运行结果
Here is mat.sum():       100
Here is mat.prod():      240000
Here is mat.mean():      25
Here is mat.minCoeff():  10
Here is mat.maxCoeff():  40
Here is mat.trace():     50Process returned 0 (0x0)   execution time : 0.323 s
Press any key to continue.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/37443.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

expandtabs()方法——tab符号转为空格

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 expandtabs()方法把字符串中的tab&#xff08;\t&#xff09;符号转为空格&#xff0c;tab&#xff08;\t&#xff09;符号默认的空格数是…

简单科普-GPT到底是什么?

1.ChatGPT ChatGPT&#xff08;全名&#xff1a;Chat Generative Pre-trained Transformer&#xff09;&#xff0c;是OpenAI研发的一款聊天机器人程序 &#xff0c;于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具&#xff0c;它能够基于在预训练阶段所见…

MATLAB2024a下的神经网络聚类工具箱聚类

1 打开神经网络聚类工具箱GUI界面 图1-1 2 导入训练数据 图2-1 导入训练集如图2-2&#xff0c;图2-3、图2-4所示 图2-2 图2-3 图2-4 如图2-4&#xff0c;确认无误点击确定 3 模型训练 如图3-1&#xff0c;调整验证集与测试集比例及映射大小后点击”训练“&#xff0c;开始训练…

Oracle、MySQL、PostgreSQL对比

在对比 Oracle、MySQL 和 PostgreSQL 关于 range/list 分区键更新操作时&#xff0c; Oracle: 默认情况下不允许对分区键进行更新操作&#xff0c;否则会报错 ORA-14402: updating partition key column would cause partition to change 。可以通过设置 ALTER TABLE table_nam…

uview文本框组件计数count报错u--textarea

报错内容&#xff1a; [Vue warn]: Error in render: “TypeError: Cannot read property ‘length’ of null” found in —> at uni_modules/uview-ui/components/u-textarea/u-textarea.vue at uni_modules/uview-ui/components/u–textarea/u–textarea.vue mp.runtime.…

如何理解泛型的编译期检查

既然说类型变量会在编译的时候擦除掉&#xff0c;那为什么我们往 ArrayList 创建的对象中添加整数会报错呢&#xff1f;不是说泛型变量String会在编译的时候变为Object类型吗&#xff1f;为什么不能存别的类型呢&#xff1f;既然类型擦除了&#xff0c;如何保证我们只能使用泛型…

浪潮信息AIStation与毕昇:让AI大模型开发变得更易用

在数字化浪潮的推动下&#xff0c;人工智能&#xff08;AI&#xff09;技术正以前所未有的速度改变着世界。近日&#xff0c;毕昇大模型应用开发平台和浪潮信息AIStation智能业务生产创新平台完成兼容性互认证。二者的融合&#xff0c;不仅简化了大模型定制开发的流程&#xff…

python--列表list切分(超详细)

在Python中&#xff0c;列表&#xff08;list&#xff09;的切分&#xff08;slicing&#xff09;是一种非常有用的操作&#xff0c;它允许你获取列表的一部分而不是整个列表。切分的基本语法如下&#xff1a; list[start:stop:step] start&#xff1a;切分的起始索引&#x…

【进阶篇-Day6:JAVA中Arrays工具类、排序算法、正则表达式的介绍】

目录 1、Arrays工具类2、排序算法2.1 冒泡排序2.2 选择排序2.3 二分查找&#xff08;折半查找&#xff09;&#xff08;1&#xff09;概念&#xff1a;&#xff08;2&#xff09;步骤&#xff1a; 3、正则表达式3.1 正则表达式的概念&#xff1a;3.2 正则表达式的格式&#xff…

Unidbg调用-补环境V3-Hook

结合IDA和unidbg,可以在so的执行过程进行Hook,这样可以让我们了解并分析具体的执行步骤。 应用场景:基于unidbg调试执行步骤 或 还原算法(以Hookzz为例)。 1.大姨妈 1.1 0x1DA0 public void hook1() {

【项目日记(二)】搜索引擎-索引制作

❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多项目内容 目录 1.前言2.索引结构2.1创捷索引2.2根据索引查询2.3新增文档2.4内存索引保存到磁盘2.5把…

android/res/raw/xxx.txt 手动添加翻译

android/res/values 下的strings.xml可以添加翻译 如果字符串写在android/res/raw&#xff0c;按如下&#xff0c;手动翻译&#xff0c; 代码片段 String info "";InputStream stream null;try {// 翻译android/res/raw/newtork_privacy_policy.txt 20240619 begi…

U-Net for text-to-image

1. Unet for text-to-image 笔记来源&#xff1a; 1.hkproj/pytorch-stable-diffusion 2.understanding u-net a comprehensive tutorial 3.Deep Dive into Self-Attention by Hand 4.Towards Understanding Cross and Self-Attention in Stable Diffusion for Text-Guided Im…

java大型医院绩效考核系统源码(医院为什么需要绩效机制?)医院绩效考核系统源码 医院管理绩效考核系统源码

java大型医院绩效考核系统源码&#xff08;医院为什么需要绩效机制&#xff1f;&#xff09;医院绩效考核系统源码 医院管理绩效考核系统源码 医院作为提供医疗服务的核心机构&#xff0c;其运营和管理效率直接影响到患者的就医体验、治疗效果以及医院的长期发展。因此&#xf…

Github 2024-06-29 Rust开源项目日报 Top10

根据Github Trendings的统计,今日(2024-06-29统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10Move项目1Rust编程语言的可靠异步运行时:Tokio 创建周期:2759 天开发语言:Rust协议类型:MIT LicenseStar数量:24319 个Fork数量…

什么是js?特点是什么?组成部分?

Js是一种直译式脚本语言&#xff0c;一种动态类型&#xff0c;弱类型&#xff0c;基于原型的高级语言。 直译式&#xff1a;js程序运行过程中直接编译成机器语言。 脚本语言&#xff1a;在程序运行过程中逐行进行解释说明&#xff0c;不需要预编译。 动态类型&#xff1a;js…

React-Native优质开源项目介绍

React Native 是一个用于构建跨平台移动应用的框架&#xff0c;它允许开发者使用 JavaScript 和 React 来构建 iOS 和 Android 应用。以下是一些优质的 React Native 开源项目&#xff0c;它们在 GitHub 上受到了广泛的认可和使用&#xff1a; 1. React Native Elements GitH…

JavaScript(3)——变量

声明变量 想要使用变量&#xff0c;首先需要创建变量 语法&#xff1a; let 变量名 声明变量有两部分构成&#xff1a;声明关键字、变量名&#xff08;标识&#xff09;let即关键字&#xff0c;关键字是系统提供的专门用来声明变量的词语let不允许多次声明同一个变量 使用变量…

代码随想录算法跟练 | Day15 | 二叉树 Part02

个人博客主页&#xff1a;http://myblog.nxx.nx.cn 代码GitHub地址&#xff1a;https://github.com/nx-xn2002/Data_Structure.git Day15 226. 翻转二叉树 题目链接&#xff1a; https://leetcode.cn/problems/invert-binary-tree/ 题目描述&#xff1a; 给你一棵二叉树的根…

构造函数的小白理解

一、实例 using System; using System.Collections; using System.Collections.Generic; using UnityEngine;//定义一个名为Question的类&#xff0c;用于存储问题及相关信息 [Serializable] public class Question {public string questionText;//存储题目文本字段public str…