SOBEL图像边缘检测器的设计

本项目使用FPGA设计出SOBEL图像边缘检测器,通过分析项目在使用过程中的工作原理和相关软硬件设计进行分析详细介绍SOBEL图像边缘检测器的设计。

资料获取可联系wechat 号:comprehensivable

边缘可定义为图像中灰度发生急剧变化的区域边界,它是图像最基本的特征。边缘检测主要就是(图像的)灰度变化的度量、检测和定位,它是图像分析和模式识别的主要特征提取手段,它在计算机视觉、图像分析等应用中起着重要的作用,是图像分析与处理中研究的热点问题。在过去的20年里产生了许多边缘检测器,而Sobel算法只涉及加法操作,但却可以得到很好的划分效果,因而是图像处理系统中最常用的边缘检测算法

Sobel算法包括带4个3×3掩码的输入图像数据,即Sobel算子,它设置权重来检测水平、垂直、左对角、右对角各个不同方向上密度幅度的不同。这个过程通常被称为过滤。我们来看像素窗口(3×3),如图2所示。水平、垂直、左对角、右对角各图像方向上密度幅度的变化可以用如下算子进行计算:

H=(Q0+2Q3+Q6)-(Q2+2Q5+Q8);V=(Q0+2Q1+Q2)-(Q6+2Q7+Q8);

DR=(Q1+2Q0+Q3)-(Q5+2Q8+Q7);DL=(Q1+2Q2+Q5)-(Q3+2Q6+Q7);

H,V,DL,DR这四个参数用于计算梯度大小和方向。

对梯度大小的一个普遍估计值为:Magnitude=Max(H,V,DR,DL)

H=(Q0+2Q3+Q6)-(Q2+2Q5+Q8);V=(Q0+2Q1+Q2)-(Q6+2Q7+Q8);

DR=(Q1+2Q0+Q3)-(Q5+2Q8+Q7);DL=(Q1+2Q2+Q5)-(Q3+2Q6+Q7);

Q0Q3Q6
Q1[i,j]Q7
Q2Q5Q8

H,V,DL,DR这四个参数用于计算梯度大小和方向。                

我们通过对图像灰度作直方图分析后,便可以给出区分度阀值

Threshold,区分度阀值往往要借助一定的经验并需要反复调整。如果Magnitude大于Threshold,则该像素被声明为边界像素,否则为一般像素。

本课题就是要求使用LPM兆功能块设计和VHDL程序设计相结合的方式或全部采用VHDL程序设计方式,用FPGA/CPLD实现Sobel算法。


图1.1为一个DSP+FPGA/CPLD的图像处理系统的总体框图,本课题就是设计图中的图像边缘检测协处理器,并且能够绘画出图形边缘如图1.2所示;

图1.1  DSP+FPGA /CPLD 图像处理系统的组成框图

图1.2  实验效果


由于Sobel算法只涉及加法操作,但却可以得到很好的划分效果,因而是图像处理系统中最常用的边缘检测算法。

Sobel算法包括带4个3×3掩码的输入图像数据,即Sobel算子:

H=(Q0+2Q3+Q6)-(Q2+2Q5+Q8);

V=(Q0+2Q1+Q2)-(Q6+2Q7+Q8);

DR=(Q1+2Q0+Q3)-(Q5+2Q8+Q7);

DL=(Q1+2Q2+Q5)-(Q3+2Q6+Q7);

H,V,DL,DR这四个参数用于计算 水平、垂直、左对角、右对角各个不同方向的梯度大小和方向(该过程称之为过滤)。

梯度大小的估计公式:Magnitude=Max(H,V,DR,DL)。

边缘的判定:如果Magnitude>Threshold,则该像素为边界像素,否则为一般像素。处理像素端见图1.3所示;

Sobel的滤波函数为:

H=(Q0+2Q3+Q6)-(Q2+2Q5+Q8);

V=(Q0+2Q1+Q2)-(Q6+2Q7+Q8);

DR=(Q1+2Q0+Q3)-(Q5+2Q8+Q7);

DL=(Q1+2Q2+Q5)-(Q3+2Q6+Q7);

Magnitude=Max(H,V,DR,DL)

为了减少设计的复杂度,可将Sobel的滤波函数中的乘法运算可以改写成加法运算:

H=(Q0+Q3+Q3+Q6)-(Q2+Q5+Q5+Q8);

V=(Q0+Q1+Q1+Q2)-(Q6+Q7+Q7+Q8);

DR=(Q1+Q0+Q0+Q3)-(Q5+Q8+Q8+Q7);

DL=(Q1+Q2+Q2+Q5)-(Q3+Q6+Q6+Q7);

对于数据的处理,我们估算一下分别使用单片机、DSP、CPLD/FPGA所需的时间。

(1)如果使用12M的单片机:完成一次Sobel滤波操作需要的时间至少为:(24×2+20+2×3+2)×1us=72us。对于一幅600×800像素的图像,总共的时间为:600×800×72us=32s。

(2)若使用40M六级流水的DSP,他们的处理时间大概为 32s/24=1.4s。

(3)如果使用CPLD/FPGA进行自行设计,通过采用并行流水线技术假设使用50M的系统时钟,处理完一个像素点的时间为 4×1/(50M)=80ns,处理完一帧图像的时间为 800×600×80ns=38.4ms,结果处理速度比DSP高了大约两个数量级,从上可以看出,使用CPLD/FPGA进行自行设计有关图像处理模块,对整个系统速度的改善是很非常明显的。


通过使用VHDL代码设计出对应的模块,以下为部分RTL图; 

UPDATE的RTL图 

读取的RTL图 

由于本次实验要求只需要在软件上显示图像并且进行边缘化即可,无需在硬件在显示出像素的数据,整体RTL图见图4.1所示,主要包括俩个模块,即SOBEL算法的部分和数据输出的部分,在SOBEL算法内部又包括了许多的模块,从而达到我们需要设计的目的。

编译完成后调用ALTERA-MODELSIM仿真如下图4.4所示;

 图4.4 调用ALTERA-MODELSIM仿真

总结:

对SOBEL算法有了初步的了解,并且本次SOBEL算法对图形边缘检测能够很好的应用,对嵌入式的功能有了更多的知晓,也明白VHDL语言的强大之处;

本次实验网上资料较多,要求使用matalab软件和EDA仿真等软件配合使用,在网络上寻找相关资料并且去深入了解,对于我的自学能力有了进一步的提高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/37305.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux中find命令和exec的强大组合用法

如何将 find 命令与 exec 一起使用 Find 是一个已经非常强大的命令,用于根据许多条件搜索文件。exec 命令使您能够处理 find 命令的结果。 我在这里分享的例子只是一瞥。find-exec 命令组合在一起为您提供了在 Linux 命令行中执行操作的无限可能。 find 和 exec 命令…

Llama 3 模型微调的步骤

环境准备 操作系统:Ubuntu 22.04.5 LTS Anaconda3:Miniconda3-latest-Linux-x86_64 GPU: NVIDIA GeForce RTX 4090 24GStep 1. 准备conda环境 创建一个新的conda环境: conda create --name llama_factory python3.11激活刚刚创…

[每周一更]-(第103期):GIT初始化子模块

文章目录 初始化和更新所有子模块分步骤操作1. 克隆包含子模块的仓库2. 初始化子模块3. 更新子模块 查看子模块状态提交子模块的更改处理子模块路径错误的问题 该问题的缘由是因为:在写某些代码的时候,仓库中有些文件夹,只提交了文件夹名称到…

使用 Ubuntu x86_64 平台交叉编译适用于 Linux aarch64(arm64) 平台的 QT5(包含OpenGL/WebEngine支持) 库

使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库 目录 使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库写在前面前期准备编译全流程1. 环境搭建2. 复制源码包并解压,创…

在Mac上恢复丢失或未保存的Word文档的5种有效方法

“救命!我想在Mac上恢复丢失的Word文档。就在 1 小时前,我错误地删除了它们,并清空了垃圾桶。这些Word文档对我来说非常重要。我不知道如何恢复它们,谁能帮我?提前致谢! 没有什么比忘记保存 Word 文档或在…

3d模型里地毯的材质怎么赋予?---模大狮模型网

在进行3D建模时,赋予地毯逼真的材质是营造现实感和增强场景氛围的重要步骤。模大狮将介绍在常见的3D建模软件中,如何有效地为地毯赋予各种材质,以及一些实用的技巧和注意事项。 一、选择合适的地毯材质 在3D建模中,地毯的材质选择…

双向长短期记忆神经网络BiLSTM

先说一下LSTM LSTM 是一种特殊的 RNN,它通过引入门控机制来解决传统 RNN 的长期依赖问题。 LSTM 的结构包含以下几个关键组件: 输入门(input gate):决定当前时间步的输入信息对细胞状态的影响程度。遗忘门&#xff…

C盘满了怎么办?用这方法彻底拯救你的C盘

C盘满了怎么办?用这方法彻底拯救你的C盘。我们的C盘是整个电脑运行的核心部分,里面装载了很重要的系统框架和数据,由于使用的时间越来越长,C盘也会积累很多的垃圾,这样就经常容易出现爆满的情况。 对于C盘爆满&#x…

扫扫地,搞搞卫生 ≠ 车间5S管理

在制造业的日常运营中,车间管理是一项至关重要的工作,它直接关系到生产效率、产品质量以及员工的工作环境。然而,许多人常常将简单的“扫扫地,搞搞卫生”等同于车间5S管理,这种误解不仅可能导致管理效果不佳&#xff0…

Halcon 如何让图像自适应窗口

一 如何让图像自适应窗口 read_image(Image,1)get_image_size(Image,Width, Height)dev_close_window()dev_open_window(0,0,Width/2,Height/2,black,WindowHandle)dev_set_part(0,0,Height-800,Width-800)dev_display(Image)二 如何实现彩色图像转化为灰色图像 read_image(I…

浅谈逻辑控制器之Switch控制器

浅谈逻辑控制器之Switch控制器 Switch Controller是Apache JMeter中一个强大的逻辑控制器,它允许用户基于特定的变量值或参数来控制哪些子采样器被执行。与简单地按照配置顺序执行的控制器不同,Switch Controller根据提供的“switch value”来决定执行哪…

深度相机识别物体——实现数据集准备与数据集分割

一、数据集准备——Labelimg进行标定 1.安装labelimg——pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple 2.建立相应的数据集存放文件夹 3.打开labelimg,直接在命令行输入labelimg即可,并初始化 4.开始标注,设置标注好…

【人工智能学习之图像操作(三)】

【人工智能学习之图像操作(三)】 图像滤波滤波概念卷积平滑算子均值滤波高斯滤波中值滤波双边滤波锐化算子USM锐化梯度算子 傅里叶变换直方图直方图直方图均衡化自适应均衡化2D 直方图直方图反向投影 图像滤波 滤波概念 滤波过程就是把不需要的信号频率…

Navicat安装与连接教程

navicat 的安装 官网:https://www.navicat.com.cn/ 进入官网之后点击左上角的产品,然后往下滑动就可以看见许多类型,我们使用的是MongoDB数据库,所以就下载Navicat 17 for MongoDB 进入到这里之后,选择自己的系统版本…

J2EE框架之mybatis学习——连接数据库实现查询操作

J2EE框架之mybatis学习——连接数据库实现查询操作 作业要求: 作者:杨建东 关于具体内容我正准备更新至我的CSDN【被瞧不起的神】也可移步我的公众号【猿小馆】 结合老师的课件和黑马程序员的课程学习。 因为我上课老师已经讲过了基本的概念和理解&a…

[leetcode]avoid-flood-in-the-city 避免洪水泛滥

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> avoidFlood(vector<int>& rains) {vector<int> ans(rains.size(), 1);set<int> st;unordered_map<int, int> mp;for (int i 0; i < rains.size(); i) {i…

LabVIEW网络开发资源

在LabVIEW开发中&#xff0c;利用网络资源进行学习和查找资料是提高技能和解决问题的重要途径。以下几个国内外优质资源可以帮助开发者获得丰富的技术支持和交流机会&#xff1a; 1. NI Community (NI社区) 简介: National Instruments官方运营的社区&#xff0c;提供丰富的资…

sql想查询一个数据放在第一个位置

sql想查询一个数据放在第一个位置 背景:比如在查询后台账号的时候想将管理员账号始终放在第一个,其他账号按照创建时间倒序排序, 可以这样写sql: SELECTid,create_time FROMuser ORDER BY CASEWHEN id 1 THEN1 ELSE 2 END ASC, create_time DESC 运行截图: 可以看到id…

专业报考628

目录 掌上高考相关专业两步走 研招网、软科最后 刚才看了&#xff0c;挺有用的育 就是一点&#xff0c; 查找相关专业 掌上高考 如果不知道喜欢什么专业&#xff0c;直接查大学&#xff0c;就查那个大学有什么不是物化强行绑定的 看**招生计划**一栏 如果有明确目标&#xf…

日志可视化监控体系ElasticStack 8.X版本全链路实战

目录 一、SpringBoot3.X整合logback配置1.1 log4j、logback、self4j 之间关系 1.2 SpringBoot3.X整合logback配置 二、日志可视化分析ElasticStack 2.1为什么要有Elastic Stack 2.2 什么是Elastic Stack 三、ElasticSearch8.X源码部署 ​四、Kibana源码部署 五、LogSta…