树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)

 本人所用树莓派4B 装载的系统与版本如下:

 版本可用命令 (lsb_release -a) 查询:

 Opencv 版本是4.5.1:

今日学习 OpenCv定位物体实时位置,代码来源是创乐博,这里作学习解释

文章提供测试代码讲解,整体代码贴出、测试效果图

目录

完整实例代码贴出:

实验过程:

获取小球的准确HSV色域:

将上一步得到的HSV色域替换在程序中:

实验结果截图与视频:

网上查阅资料贴出:


完整实例代码贴出:

这个代码实现了圈出指定HSV色彩范围的圆形物体,并打印出其质心在视频帧上的坐标

并且有LED相关的亮灭操作用于指示是否检测到目标

# -*- coding: utf-8 -*-from __future__ import print_function     # 导入print函数,确保在Python 2和Python 3中都能以兼容的方式使用print。  
from imutils.video import VideoStream # 从imutils库中导入VideoStream,用于从摄像头捕获视频帧。 
import imutils                                             # 导入imutils库,该库提供了图像和视频处理的实用功能。 
import time
import cv2
import os
import RPi.GPIO as GPIO                          # 导入Raspberry Pi的GPIO库,用于控制GPIO引脚。Led = 21                                                      # 定义一个变量Led,表示连LED的GPIO引脚编号。
GPIO.setwarnings(False)                           # 关闭GPIO库的警告信息。
GPIO.setmode(GPIO.BCM)                       # 设置GPIO引脚编号模式为BCM(Broadcom SOC channel mode)。
GPIO.setup(Led, GPIO.OUT)                     # 设置GPIO引脚Led为输出模式。# 定义一个函数,用于打印对象中心的坐标。
def mapObjectPosition (x, y):print ("[INFO] Object Center coordenates at X0 = {0} and Y0 =  {1}".format(x, y))# 打印一条信息,表示正在等待摄像头预热。 
print("[INFO] waiting for camera to warmup...")
vs = VideoStream(0).start()                     # 创建一个VideoStream对象,并启动它。0表示使用默认的摄像头。  
time.sleep(2.0)                                          # 等待2秒,确保摄像头已经预热完成。colorLower = (9,135,231)                         # 定义HSV颜色空间的下限,用于颜色过滤。
colorUpper = (31,255,255)                       # 定义HSV颜色空间的上限,用于颜色过滤。GPIO.output(Led, GPIO.LOW)                # 将Led引脚设置为低电平,关闭LED。 
ledOn = False                                           # 定义一个变量ledOn,表示LED是否已打开。while True:frame = vs.read()                                                        # 从VideoStream中读取一帧图像。  frame = imutils.resize(frame, width=500)               # 调整帧的大小,使其宽度为500像素。frame = imutils.rotate(frame, angle=0)                   # 旋转帧(虽然在这里旋转角度为0,所以实际上没有旋转)。hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)  # 将帧从BGR颜色空间转换为HSV颜色空间。mask = cv2.inRange(hsv, colorLower, colorUpper)# 使用定义的颜色范围创建一个颜色掩码。mask = cv2.erode(mask, None, iterations=2)         # 对掩码进行腐蚀操作,减少噪声。mask = cv2.dilate(mask, None, iterations=2)         # 对掩码进行膨胀操作,确保对象区域被完全覆盖# 在掩码上查找轮廓。 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = cnts[0] if imutils.is_cv2() else cnts[1]            # 根据OpenCV的版本(2或3/4),选择正确的轮廓列表。 center = None                                                            # 初始化一个变量center,用于存储对象的中心坐标。 if len(cnts) > 0:       # 如果找到了轮廓...  c = max(cnts, key=cv2.contourArea)               # 找到面积最大的轮廓。((x, y), radius) = cv2.minEnclosingCircle(c)     # 找到该轮廓的最小外接圆,并获取其圆心和半径。M = cv2.moments(c)                                         # 计算轮廓c的矩,矩是一组值,可以从中推导出对象的形状特征,如面积、质心等。 center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # 使用矩来计算轮廓的质心(或称为中心),并将其存储在变量center中。 if radius > 10:  # 如果找到的最小外接圆的半径大于10(一个阈值,可以根据实际情况调整):cv2.circle(frame, (int(x), int(y)), int(radius),(0, 255, 255), 2)  # 在原帧上绘制找到的最小外接圆,颜色为青色(BGR中的(0, 255, 255)),线宽为2。cv2.circle(frame, center, 5, (0, 0, 255), -1)  # 在原帧上绘制轮廓的质心(或中心),颜色为红色(BGR中的(0, 0, 255)),并填充。mapObjectPosition(int(x), int(y))             # 调用之前定义的函数,打印对象中心的坐标。  if not ledOn:                                              # 如果LED灯之前没打开(ledOn为False),则将其打开,并将ledOn设置为True。GPIO.output(Led, GPIO.HIGH)ledOn = Trueelif ledOn:         # 如果没有找到轮廓,但LED灯是打开的(ledOn为True):关闭LED灯,并将ledOn设置为False。GPIO.output(Led, GPIO.LOW)ledOn = Falsecv2.imshow("Frame", frame) # 使用OpenCV的imshow函数显示处理后的帧。key = cv2.waitKey(1) & 0xFF   # 如果按下的键是Esc键(ASCII码为27),则退出循环。  if key == 27:breakprint("\n [INFO] Exiting Program and cleanup stuff \n")  # 打印一条信息,表示程序正在退出并进行清理。  
GPIO.cleanup()                                                                       # 清理GPIO设置,释放资源。
cv2.destroyAllWindows()                                                      # 关闭所有OpenCV打开的窗口。
vs.stop()                                                                                  # 停止VideoStream的捕获。

实验过程:

代码中所用的大部分函数已经在之前的几篇文章提到过了,就不重复解释了:

文章网址如下:

树莓派4B_OpenCv学习笔记9:图片的腐蚀与膨胀-CSDN博客

树莓派4B_OpenCv学习笔记12:OpenCv颜色追踪_画出轨迹_树莓派opencv颜色识别-CSDN博客树莓派4B_OpenCv学习笔记13:OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆-CSDN博客

获取小球的准确HSV色域:

因为程序中已经存在了寻找最大轮廓圆的处理,因此即使不使用上一节文章的手动调节HSV的处理也没什么大问题,但我这里为了检测更为准确专用,还是加上了上一节代码的HSV微调操作:

文章网址如下:

树莓派4B_OpenCv学习笔记13:OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆-CSDN博客

拍摄照片获取BGR颜色空间:160    75    13

转换为大致的HSV色彩空间:

再使用之前的颜色小球追踪程序对HSV进行进一步细节调整:

调整前:

[97,100,100]

[117,255,255]

调整后:

[92,189,130]

[117,244,200]

将上一步得到的HSV色域替换在程序中:

实验结果截图与视频:

树莓派4B_OpenCv学习笔记15:OpenCv定位物体

网上查阅资料贴出:

[树莓派基础]11.树莓派OpenCV定位物体的实时位置_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/37242.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里AIDC - 杭州 - 渗透测试岗

渗透测试岗 - 阿里AIDC - 杭州 面试开始 一、自我介绍 - 2分钟二、面试官提问与个人对答三、问面试官问题面试结束 结果:个人觉得悬,但是对方很有礼貌,说话态度也非常好总结:其实问题问的并不是特别难,主要是自己对攻击…

操作系统期末复习(对抽象概念的简单形象化)

操作系统 引论 定义与基本概念:操作系统是计算机硬件与用户之间的桥梁,类似于家中的管家,它管理硬件资源(如CPU、内存、硬盘),并为用户提供方便的服务(应用程序执行、文件管理等)。…

从 Linux 向 Windows 传文件和从 Windows 向 Linux 传文件的方法

这两种传递文件的方式是可行的,下面是对每种方式的具体说明和步骤: 1. 从 Linux 向 Windows 传文件 使用 Python 的 HTTP 服务器,可以在 Linux 端快速搭建一个简单的文件服务器。 步骤如下: 在 Linux 终端中,进入你…

IDEA SpringBoot整合SpringData JPA(保姆级教程,超详细!!!)

目录 1. 简介 2. 创建SpringBoot项目 3. Maven依赖引入 4. 修改application.properties配置文件 5. Entity实体类编写 6. Dao层接口开发 7. 测试接口开发 8. 程序测试 1. 简介 本博客将详细介绍在IDEA中,如何整合SpringBoot与SpringData JPA,以…

用于程序搜索的智能融合算法的设计与实现(C++,已用于程序中)

该程序搜索算法是我最近写的软件中使用到的算法,软件的项目地址如下:https://github.com/ghost-him/QuickLaunch/。建议打开源码,找到对应的代码后再阅读本文章。 该算法已经应用在软件中,并且取得了令我自己很满意的效果。 前言…

TIOBE 6月榜单出炉!编程语言地位大洗牌,谁才是王?

C历史上首次超越C!!! TIOBE 公布了 2024 年 6 月编程语言的排行榜:https://www.tiobe.com/tiobe-index/ 排行榜 以下列出的语言代表了第51至第100名。由于它们之间的差异相对较小,编程语言仅以字母顺序列出。 ABC, A…

如何实现HPC数据传输的高效流转,降本增效?

高性能计算(HPC)在多个行业中都有应用,涉及到HPC数据传输的行业包括但不限于: 1.科学研究:在物理学、化学、生物学、地球科学等领域进行模拟和建模。 2.工程和产品设计:进行复杂系统的设计和分析&#xf…

CesiumJS【Basic】- #023 加载webm文件(Entity方式)

文章目录 加载webm文件(Entity方式)1 目标2 代码2.1 main.ts3 资源文件加载webm文件(Entity方式) 1 目标 使用Entity方式加载webm文件 2 代码 2.1 main.ts /** @Author: alan.lau* @Date: 2024-06-16 11:15:48* @LastEditTime: 2024-06-16 11:43:02* @LastEditors: al…

江山欧派杯2024全国华佗五禽戏线上线下观摩交流比赛在亳州开幕

6月28日,2024全国华佗五禽戏线上线下观摩交流比赛在安徽省亳州市开幕。 此次比赛是由安徽省亳州市文化旅游体育局和安徽省非物质文化遗产保护中心主办、亳州市华佗五禽戏协会(国家级非遗华佗五禽戏保护单位)和亳州市传统华佗五禽戏俱乐部&…

linux 设置程序自启动

程序随系统开机自启动的方法有很多种, 这里介绍一种简单且常用的, 通过系统的systemd服务进行自启动。 第一步: 新建一个.service文件 sudo vim /etc/systemd/system/myservice.service[Unit] DescriptionMy Service #Afternetwork.target[…

【鸿蒙】稍微理解一下Stage模型

鸿蒙的Stage模型是HarmonyOS多端统一的应用开发框架中的一个核心概念,用于描述应用的界面层次结构和组件之间的关系。下面将详细解析Stage模型的主要组成部分和特点: 模型组成: UIAbility组件:这是应用中负责绘制用户界面的组件&a…

LeetCode:经典题之206、92 题解及延伸

系列目录 88.合并两个有序数组 52.螺旋数组 567.字符串的排列 643.子数组最大平均数 150.逆波兰表达式 61.旋转链表 160.相交链表 83.删除排序链表中的重复元素 389.找不同 1491.去掉最低工资和最高工资后的工资平均值 896.单调序列 206.反转链表 92.反转链表II 141.环形链表 …

【应用开发二】GPIO操控(输出、输入、中断)

1 操控GPIO方式 控制目录:/sys/class/gpio /sys/class/gpio目录下文件如下图所示: 1.1 gpiochipX目录 功能:当前SoC所包含的所有GPIO控制器 i.mx6ull一共包含5个GPIO控制器,分别为GPIO1~5分别对应gpiochip0、gpiochip32、gpi…

视频共享融合赋能平台LntonCVS安防监控平台现场方案实现和应用场景

LntonCVS国标视频融合云平台采用端-边-云一体化架构,部署简单灵活,功能多样化。支持多协议(GB28181/RTSP/Onvif/海康SDK/Ehome/大华SDK/RTMP推流等)和多类型设备接入(IPC/NVR/监控平台)。主要功能包括视频直…

【2024大语言模型必知】做RAG时为什么要使用滑动窗口?句子窗口检索(Sentence Window Retrieval)是什么?

目录 1. 传统的向量检索方法,使用整个文档检索,为什么不行? 2.句子滑动窗口检索(Sentence Window Retrieval)工作原理 3.句子滑动窗口检索(Sentence Window Retrieval)的优点 1. 传统的向量检…

区块链的技术架构:节点、网络和数据结构

区块链技术听起来很高大上,但其实它的核心架构并不难理解。今天我们就用一些简单的例子和有趣的比喻,来聊聊区块链的技术架构:节点、网络和数据结构。 节点:区块链的“细胞” 想象一下,区块链就像是一个大型的组织&a…

001 SpringMVC介绍

文章目录 基础概念介绍BS和CS开发架构应用系统三层架构MVC设计模式 SpringMVC介绍SpringMVC是什么SpringMVC与Spring的联系为什么要学习SpringMVC 六大组件介绍六大组件(MVC组件其他三大组件)说明 基础概念介绍 BS和CS开发架构 一种是C/S架构,也就是客户端/服务器…

启动Redis服务器

名人说:一点浩然气,千里快哉风。 ——苏轼 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、在 Linux 或 macOS 上启动 Redis二、在 Windows 上启动 Redis三、配置 Redis 为服务启动&…

ExVideo: 提升5倍性能-用于视频合成模型的新型后调谐方法

标题:ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning作者: Zhongjie Duan; Wenmeng Zhou; Cen Chen; Yaliang Li; Weining QianDOI: 10.48550/arXiv.2406.14130摘要: Recently, advancements in video synthesis have attracted s…

【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens

【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation 论文:https://arxiv.org/abs/2405.09789 代码:https://github.com/ViTAE-Transformer/LeMeViT 由于相邻像素和图像块之间的高…