论文速递 | Management Science 4月文章合集(下)

编者按

在本系列文章中,我们梳理了运筹学顶刊Management Science在2024年4月份发布有关OR/OM以及相关应用的13篇文章的基本信息,旨在帮助读者快速洞察领域新动态。本文为第二部分(2/2)。

推荐文章1

● 题目:Social Learning in Prosumption: Evidence from a Randomized Field Experiment

消费中的社会学习:来自随机场实验的证据

 原文链接:https://pubsonline.informs.org/doi/10.1287/mnsc.2021.00789(原doi网页无法获取)

● 作者:Jaehwuen Jung , Tianshu Sun , Ravi Bapna , Joseph M. Golden

● 发布时间:2024/04/09

● 摘要

  • 数字技术使消费者能够积极参与各种产品的设计和生产过程,从而产生了“产消者”的概念。这类产品的很大一部分价值是通过产消过程产生的。各种各样的公司都在投资建设这样的能力;然而,产消中一个主要的、很大程度上未被探索的分歧是客户需要付出努力,创造性地设计产品,并从这一过程中获取价值。在本研究中,我们将探讨社会学习——向焦点顾客展示其他顾客的创作——是否可以改善这种分歧,以及如何改善这种分歧。可以说,通过向焦点客户展示其他人的产品设计,特别是如果这些设计具有吸引力和高质量,公司可能会诱使用户启动设计流程。展示他人的设计还可能影响客户对自身能力的看法,即他们设计出有价值的、他们愿意购买的产品的自我效能感。某些设计可能被认为超出了焦点用户的创造性范围,因此降低了他们完成设计并购买它的可能性。这种理解在消费者购买漏斗的不同阶段有何不同?我们与一个专门从事定制照片产品的电子商务平台密切合作,通过两个大规模的真人随机现场实验来检验社会学习的有效性。我们外在地改变了他人设计的可用性以及向受试用户展示的图片的特征。我们的分析表明,将其他用户的设计作为范例展示可以非常有效地影响重点客户的购买和设计行为,但企业必须选择合适的客户,并谨慎选择展示的用户形象设计类型。在购买漏斗的较高阶段,向这些客户展示高质量的设计会大大增加他们创建项目的可能性。在漏斗的较低阶段,自我效能效应占主导地位,当向用户展示易于学习的设计时,他们更有可能完成设计并购买产品。

  • Digital technologies enable consumers to actively participate in the design and production process for a wide range of products, giving rise to the concept of a ‘prosumer.’ A significant portion of the value for such products is generated through the prosumption process. A variety of firms are investing in building such capabilities; however, a major, largely unexplored, friction in prosumption is the customers’ effort involved to undertake a creative exercise of designing products and extracting value from the process. In this study, we ask whether and how social learning—the act of showing creations made by other customers to focal customers—can ameliorate such friction. Arguably, by showing others’ product designs to focal customers, especially if such designs are attractive and of high quality, the firm may entice users to initiate the design process. Showing others’ designs is also likely to influence customers’ beliefs about their own ability—their self-efficacy—to design a valuable product that they would like to purchase. Certain designs may be perceived as out of the creative reach of focal users and therefore reduce their likelihood of finishing the design and purchasing it. How does this understanding vary across different stages of the purchase funnel? In close collaboration with an e-commerce platform that specializes in customized photo products, we examine the effectiveness of social learning by means of two large scale in-vivo randomized field experiments. We exogenously vary both the availability of others’ designs and the characteristics of the images shown to the treated users. Our analysis shows that showing other users’ designs as examples can be highly effective in influencing the purchase and design behavior of focal customers, but firms must choose the right customers and carefully select the type of user image design for display. In the upper stages of the purchase funnel, showing high-quality designs to these customers significantly increases the likelihood of project creation. Lower down in the funnel the self-efficacy effect dominates, and users are more likely to finish designs and purchase products when shown designs that are easy to learn.

推荐文章2

● 题目:Strategic Responses to Algorithmic Recommendations: Evidence from Hotel Pricing 

对算法推荐的战略回应:来自酒店定价的证据

 原文链接:https://doi.org/10.1287/mnsc.2022.03740

● 作者:Daniel Garcia , Juha Tolvanen , Alexander K. Wagner 

● 发布时间:2024/04/16

● 摘要

  • 我们使用高分辨率的酒店客房价格数据来研究算法建议和人类决策之间的相互作用。我们记录了由人类决策者的调整成本引起的价格设定分歧,引发了与算法顾问的利益冲突。一个具有昂贵价格调整的建议模型表明,在均衡状态下,算法价格建议在战略上存在偏见,并导致人类决策者的次优定价。我们使用结构模型量化了推荐策略偏差的损失,并估计了转向全自动算法定价所带来的潜在收益。

  • We study the interaction between algorithmic advice and human decisions using high-resolution hotel-room pricing data. We document that price setting frictions, arising from adjustment costs of human decision makers, induce a conflict of interest with the algorithmic advisor. A model of advice with costly price adjustments shows that, in equilibrium, algorithmic price recommendations are strategically biased and lead to suboptimal pricing by human decision makers. We quantify the losses from the strategic bias in recommendations using as structural model and estimate the potential benefits that would result from a shift to fully automated algorithmic pricing.

推荐文章3

● 题目:Uncovering Sophisticated Discrimination with the Help of Credence Goods Markups: Evidence from a Natural Field Experiment

利用信用商品加价率揭示复杂的歧视:来自自然田野实验的证据

 原文链接:https://doi.org/10.1287/mnsc.2022.02666

● 作者:Jonathan Hall , Rudolf Kerschbamer , Daniel Neururer , Eric Skoog 

● 发布时间:2024/04/22

● 摘要

  • 信誉商品(如维修和保健服务)的特点是,信息较少的客户与信息较多的专家卖家之间存在严重的信息不对称。这些信息不对称为卖方的欺诈行为敞开了大门。在一个预先登记的自然现场实验中,我们在一个维度上改变卖方对服务是普通服务还是信誉良好服务的感知,在第二个维度上改变顾客是少数人还是多数人的卖方感知。这样,我们就能测算出诱导信用商品加价的规模,并解决它是否与歧视有系统性互动的问题。我们发现,平均而言,存在较大的可信商品加价。此外,我们还发现,如果商品被视为可信商品,少数群体成员会支付相当大的歧视性加价,但如果商品被视为普通商品,则不会。我们的研究结果表明,在信息不对称被用来掩盖歧视(欺诈)行为的情况下,卖方参与了复杂的歧视行为。在事后调查的帮助下,我们得出了对结果的可能解释。

  • Credence goods, such as repair and healthcare services, are characterized by profound information asymmetries between less-informed customers and better-informed expert sellers. These information asymmetries open the door for fraudulent behavior on the seller side. In a preregistered natural field experiment, we vary in one dimension the seller’s perception of whether the service is an ordinary or a credence good service and in the second dimension whether the customer is a member of a minority or a member of the majority. This allows us to measure the size of the induced credence goods markup and to address the question whether it interacts systematically with discrimination. We document the existence of a large credence goods markup, on average. Moreover, we find that members of the minority pay a sizeable discriminatory markup if the good is perceived as a credence good but not if it is perceived as an ordinary good. Our results show that sellers engage in sophisticated discrimination where informational asymmetries are used to hide discriminatory (fraudulent) behavior. With the help of an ex post survey, we derive a possible explanation for our results.

推荐文章4

● 题目:Understanding the Impact of Reviews on Consumer Product Choices Under Negotiated Pricing

了解评论对协商定价下消费者产品选择的影响

 原文链接:https://doi.org/10.1287/mnsc.2020.02658

● 作者:Jisu Cao , Sha Yang 

● 发布时间:2024/04/22

● 摘要

  • 我们研究了当消费者可以协商价格时,评论对产品选择的影响。尽管之前的研究已经考察了评论在各种情况下的影响,但没有一项研究考虑了购买价格可以协商的情况。我们推测,在线评论会通过消费者的基本产品偏好和消费者的议价能力来影响需求。利用独特的消费者新车购买评论数据集,我们开发并估算了一个结构模型,以分解和量化评论影响需求的两种机制:基线偏好机制和议价能力机制。我们的反事实分析表明,在解释评论中的历史价格和折扣频率信息如何影响卖家利润时,议价能力机制比基准偏好机制更为重要。忽略评论对协商价格的影响会导致对评论有效性的估计出现偏差。我们提醒大家警惕一种流行的销售做法,即用折扣来换取正面评论,因为当未来的消费者利用这些折扣信息来协商更低的价格时,这种做法可能会适得其反。

  • We study the impact of reviews on product choices when consumers can negotiate price. Although prior research has examined the impact of reviews in various contexts, none has considered a setting in which the purchase price is negotiated. We postulate that online reviews affect demand through consumer baseline product preference and consumer bargaining power. Leveraging a unique data set of consumer reviews of new car purchases, we developed and estimated a structural model to decompose and quantify the two mechanisms of how reviews affect demand: baseline preference mechanism versus bargaining power mechanism. Our counterfactual analysis suggests that the bargaining power mechanism is more important than the baseline preference mechanism in explaining how historical price and discount frequency information in reviews affect seller profits. Ignoring the impact of reviews on the negotiated price leads to a biased estimation of the effectiveness of reviews. We call into caution a popular selling practice of using discounts in exchange for positive reviews, as it can backfire when future consumers leverage this discount information to negotiate a lower price.

推荐文章5

● 题目:On Customer (Dis-)Honesty in Unobservable Queues: The Role of Lying Aversion

论不可观察队列中的顾客(不)诚信:说谎厌恶的作用

 原文链接 :https://doi.org/10.1287/mnsc.2022.04036

● 作者:Arturo Estrada Rodriguez , Rouba Ibrahim , Dongyuan Zhan 

● 发布时间:2024/04/24

● 摘要

  • 人们为了更快地获得服务而虚报私人信息的排队现象随处可见。受这种行为在实践中普遍存在的启发,我们构建了一个队列博弈理论模型,在这个模型中,顾客做出策略性的宣称以减少他们的等待时间,而管理者则根据这些要求决定静态调度策略,以最小化系统中的预期延迟成本。我们建立了一个 “说谎-厌恶 ”模型,在该模型中,客户既会产生延迟成本,也会产生说谎成本。我们通过控制实验来验证我们对客户误报行为的建模假设。特别是,我们发现人们确实会产生说谎成本,而且我们发现他们的误报行为并不取决于等待时间的变化,而是取决于调度参数。基于经过验证的说谎厌恶模型,我们研究了博弈中出现的均衡。我们发现,在某些条件下,最优政策是使用荣誉政策,即根据客户的要求给予服务优先权。我们还发现,通过升级政策激励更多的诚实可能是最优的,在这种政策下,一些声称不值得优先的客户会被升级到优先队列。我们发现升级政策偏离了著名的 cµ 规则。

  • Queues where people misreport their private information to access service faster are everywhere. Motivated by the prevalence of such behavior in practice, we construct a queueing-game-theoretic model where customers make strategic claims to reduce their waiting time and where the manager decides on the static scheduling policy based on those claims to minimize the expected delay cost in the system. We develop a lying-aversion model where customers incur both delay and lying costs. We run controlled experiments to validate our modeling assumptions regarding customer misreporting behavior. In particular, we find that people do incur lying costs, and we find that their misreporting behavior does not depend on changes in waiting times but rather, on the scheduling parameters. Based on the validated lying-aversion model, we study the equilibrium that arises in our game. We find that under certain conditions, the optimal policy is to use an honor policy where service priority is given according to customer claims. We also find that it may be optimal to incentivize more honesty by means of an upgrading policy where some customers who claim to not deserve priority are upgraded to the priority queue. We find that the upgrading policy deviates from the celebrated  rule.

推荐文章6

● 题目:Online Advertisement Allocation Under Customer Choices and Algorithmic Fairness

客户选择和算法公平下的在线广告分配

 原文链接 :https://doi.org/10.1287/mnsc.2021.04091

● 作者:Xiaolong Li , Ying Rong , Renyu Zhang , Huan Zheng 

● 发布时间:2024/04/24

● 摘要

  • 广告是电子商务平台的重要收入来源,也是卖家的重要在线营销工具。在本文中,我们探讨了电子商务平台在每位客户到达时有限时段的动态广告分配,客户在点击广告时遵循选择模型。受最近倡导的在线广告投放算法公平性的启发,我们通过不同广告和客户类型的点击率评估一般公平性指标来调整广告价值。原始的在线广告分配问题难以解决,因此我们提出了一种新颖的随机规划框架(称为两阶段目标债务),该框架首先决定点击率目标,然后在第二阶段设计广告分配政策以满足这些目标。我们展示了原始问题、放宽的点击率目标优化和流体逼近(Fluid)凸规划之间的渐进等价性。我们还设计了一种债务加权要约集算法,并证明只要问题规模扩展到无穷大,该算法在第一阶段最优点击率目标下就是(渐进)最优的。与 Fluid 启发式及其解析变体相比,我们的方法具有更好的可扩展性,并能在整个时间跨度内更平稳地消耗广告预算,这在实际的在线广告业务中是非常可取的。最后,我们提出的模型和算法有助于大幅提高在线电子商务平台广告分配的公平性,而不会明显影响效率。

  • Advertising is a crucial revenue source for e-commerce platforms and a vital online marketing tool for their sellers. In this paper, we explore dynamic ad allocation with limited slots upon each customer’s arrival for an e-commerce platform, where customers follow a choice model when clicking the ads. Motivated by the recent advocacy for the algorithmic fairness of online ad delivery, we adjust the value from advertising by a general fairness metric evaluated with the click-throughs of different ads and customer types. The original online ad-allocation problem is intractable, so we propose a novel stochastic program framework (called two-stage target-debt) that first decides the click-through targets and then devises an ad-allocation policy to satisfy these targets in the second stage. We show the asymptotic equivalence between the original problem, the relaxed click-through target optimization, and the fluid-approximation (Fluid) convex program. We also design a debt-weighted offer-set algorithm and demonstrate that, as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal under the optimal first-stage click-through target. Compared with the Fluid heuristic and its resolving variants, our approach has better scalability and can deplete the ad budgets more smoothly throughout the horizon, which is highly desirable for the online advertising business in practice. Finally, our proposed model and algorithm help substantially improve the fairness of ad allocation for an online e-commerce platform without significantly compromising efficiency.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/34602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模拟面试之外卖点单系统(高频面试题目mark)

今天跟大家分享一个大家简历中常见的项目-《外卖点单系统》,这是一个很经典的项目,有很多可以考察的知识点和技能点,但大多数同学都是学期项目,没有实际落地,对面试问题准备不充分,回答时抓不到重点&#x…

Handling `nil` Values in `NSDictionary` in Objective-C

Handling nil Values in NSDictionary in Objective-C When working with Objective-C, particularly when dealing with data returned from a server, it’s crucial (至关重要的) to handle nil values appropriately (适当地) to prevent unexpected crashes. Here, we ex…

VBA递归过程快速组合数据

实例需求:数据表包含的列数不固定,有的列(数量和位置不固定)包含组合数据,例如C2单元格为D,P,说明Unit Config有两种分别为D和P,如下图所示。 现在需要将所有的组合罗列出来,如下所示…

git上传本地项目及更新项目

1、注册GitHub账号和下载git 2、在GitHub上新建一个仓库,点击号——>New repository,给仓库起一个名字,点击Create repository 3、进入要上传的项目中,右键点击git back here,命令行输入git init初始化&#xff0c…

全球电力电子测试方案专业提供商「艾诺仪器」×企企通召开项目启动会,推进企业采购数智化升级

导读 供应链管理已成为企业的核心竞争力之一,为应对快速变化的市场环境,艾诺仪器亟需强化采购管理和供应链协同的竞争力。SRM涉及到各事业部、各所属企业等多个层面,希望通过双方优势资源的整合,打造高效协同、科学智能的数字化采…

数据挖掘概览

数据挖掘(Data Mining)就是从大量的,不完全的,有噪声的,模糊的,随机的实际应用数据中,提取隐含在其中的,人们事先不知道的,但又是潜在有用的信息和知识的过程. 预测性数据挖掘 分类 定义:分类就是把一些新的数据项映射到给定类别中的某一个类别 分类流程&#x…

Python | Leetcode Python题解之第189题轮转数组

题目&#xff1a; 题解&#xff1a; def reverse(nums: List[int], left, right) -> None:i, j left, rightwhile i < j:nums[i], nums[j] nums[j], nums[i]i1j-1 class Solution:def rotate(self, nums: List[int], k: int) -> None:n len(nums)k % nreverse(num…

Midway + TypeORM项目部署到BT后启动失败,MySQL报错

Midway TypeORM项目部署到BT后启动失败&#xff0c;MySQL报错 前沿 您需要先了解这篇文章&#xff1a;https://blog.csdn.net/weixin_45687201/article/details/139336111 错误日志 服务状态开启后就失败项目日志&#xff0c;输出 \> my-midway-project1.0.0 start \&…

【Python新手入门指南】Linux-conda环境安装与使用参考

文章目录 前言一、conda是什么&#xff1f;二、安装步骤三、使用Conda来管理Python环境1. 创建环境2. 激活环境3. 安装软件包4. 查看环境5. 删除环境&#xff1a;如果您不再需要某个环境&#xff0c;可以使用以下命令将其删除&#xff1a; 前言 如果你是一位经验丰富的Python开…

【SQL Server数据库】熟悉DBMS的基本操作及数据库的创建

目录 一、SQL SERVER基本操作 二、用Management Studio创建数据库 1、使用Management Studio创建数据库bookdb&#xff0c;各项参数采用默认设置。 2、使用Management Studio创建数据库EDUC 3. 在EDUC中创建三个表&#xff0c;根据下面要求创建Student&#xff0c;Course&am…

昇思25天学习打卡营第01天|基本介绍快速入门

一、什么是昇思MindSpore&#xff1f; 昇思MindSpore是一个全场景深度学习框架&#xff0c;详见基本介绍 那什么是深度学习呢&#xff1f; 深度学习是一种特殊的机器学习&#xff0c;主要是利用了多层神经网络模拟人脑&#xff0c;自动提取特征并进行预测。 什么是机器学习…

【C++】模板详解

前言&#xff1a;在之前的学习我们发现我们无时无刻都用到模板这个东西&#xff0c;但是博主一直没有进行讲解&#xff0c;今天我们就一次性对模板进行一个整体的学习与讲解。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:高质量&#…

计算机毕业设计Python+LSTM+Tensorflow股票分析预测 基金分析预测 股票爬虫 大数据毕业设计 深度学习 机器学习 数据可视化 人工智能

基于TensorFlow-LSTM的股票预测系统开题报告 一、研究背景与意义 随着信息技术的飞速发展&#xff0c;股票市场作为现代经济活动的重要组成部分&#xff0c;其价格波动受到广泛关注。投资者们迫切希望通过科学的方法预测股票价格&#xff0c;以优化投资决策&#xff0c;实现利…

【Java06】Java中的类与对象

1. 类和对象 Java中的类模版如下&#xff1a; [修饰符] class 类名 {0~n个构造器;0~n个成员变量;0~n个成员方法; }构造器是类创建对象的根本途径。如果没有显式定义构造器&#xff0c;系统会默认提供一个。成员变量、成员方法的定义和C类似&#xff0c;只不过多了修饰符。 Ja…

前端基础——自学习梳理

超文本协议HTML <!DOCTYPE HTML> <html><head><meta charset"utf-8"> <style> /*Css*/.sty1{height:100px;width:100px;background-color: red;margin-top: 10px;float:left;margin-left: 10px;box-shadow: 10px 10px 10px #0000…

多路h265监控录放开发-(14)通过PaintCell自定义日历控件继承QCalendarWidget的XCalendar类

首先创建一个新类XCalendar继承QCalendarWidget类&#xff0c;然后在UI视图设计器中把日历提升为XCalendar&#xff0c;通过这个函数自己设置日历的样式 xcalendar.h #pragma once #include <QCalendarWidget> class XCalendar :public QCalendarWidget { public:XCal…

Linux 运维王者从不离手的10款工具

运维工程师在日常工作中频繁运用的10款工具&#xff0c;并细致阐述每款工具的功能、适用场景以及其卓越之处。 1. Shell脚本 功能&#xff1a;主要用于自动化任务和批处理作业。 适用场景&#xff1a;频繁用于文件处理、系统管理、简单的网络管理等操作。 优势&#xff1a;灵…

Java 抽象类

目录 1、什么是抽象类 2、定义抽象类 3、抽象类特性 4、 抽象类的作用 1、什么是抽象类 抽象类&#xff0c;顾名思义就是抽象的。该类没有包含足够的信息去描绘一个具体的对象&#xff0c;这样的类称为抽象类。抽象类着一种优化了的概念组织方式&#xff0c;它是所有子类的…

研究上百个小时,高手总结了这份 DALL-E 3 人物连续性公式(上)

上篇 Dall-E 3 讲了常见的 20 个公式&#xff0c;今天单独来讲一下人物连续性公式&#xff0c;这个公式来自 AshutoshShrivastava。 上篇回顾&#xff1a; 效果超好&#xff01;全新 DALL-E 3 必须掌握的 20 种公式使用方法上周末&#xff0c;DALL-E 3 正式加入 ChatGpt&…

嵌入式实验---实验八 ADC电压采集实验

一、实验目的 1、掌握STM32F103ADC电压采集程序设计流程&#xff1b; 2、熟悉STM32固件库的基本使用。 二、实验原理 1、使用STM32F103R6采集可变电阻上的电压信号&#xff0c;并通过计算把当前ADC转换值和电压值显示在LCD1602液晶屏上&#xff1b; 2、对照电压表读数&…