华芯微特SWM34-使用定时器捕获快速解码EV1527编码

在无线应用领域,很多433Mhz和315Mhz的遥控器,红外探测器,门磁报警器,无线门铃等都使用EV1527编码格式来发射数据。发射和接收均有对应的RF芯片完成,而且成本极低(目前市场价3毛钱不到)。接收芯片解调出来数据后,需要进行编码的解码,分离地址码和数据码,以便后续代码使用。

EV1527的编码格式如下:

在这里插入图片描述
在这里插入图片描述
需要特别注意点:

  1. 一帧数据由三个部分组成:同步码,地址码(20bit),数据位(4bit)
  2. 同步码:4个clock的高电平时间+124个clock的低电平时间。
  3. 数据1:12个clock的高电平时间+4个clock的低电平时间。
  4. 数据0:4个clock的高电平时间+12个clock的低电平时间。
  5. 同步码和数据码的脉冲宽度不是用时间来描述的,而是用时钟周期的个数来描述。这就说明,即使用相同的发射芯片,由于使用不同的振荡电阻和制造工艺,pcb走线的不同也会导致脉冲的时间是不同的。但是对于同样工艺,同样设计的pcb,同样芯片的不同产品之间量产具有一致性(同一批产品具有一致性)。

有了以上的基本知识后,我们有两个思路来进行解码:
一. 使用边沿中断加定时器的方式解码.–适合低端单片机,解码复杂。
二. 使用带有脉冲捕获功能的定时器解码。–解码简单。
我们以华芯微特SWM341为例子来讲解如何快速解码:

先定义各个编码的脉冲时间参数(要根据你的发射器实际测量来调整),并且可以允许一定的误差,本项目允许±10%的时间误差(一般的发射器时钟误差小于3%)。

#define EV1527_H4			328 //窄脉冲基本宽度 us,不同的遥控器要实测后确定
#define EV1527_H4_MIN	(EV1527_H4 *90 / 100)
#define EV1527_H4_MAX	(EV1527_H4 *110 / 100)#define EV1527_H12			998 //宽脉冲基本宽度 us,不同的遥控器要实测后确定
#define EV1527_H12_MIN	(EV1527_H12 *90 / 100)
#define EV1527_H12_MAX	(EV1527_H12 *110 / 100)#define EV1527_L4			EV1527_H4 //宽脉冲基本宽度 us
#define EV1527_L4_MIN	(EV1527_L4 *90 / 100)
#define EV1527_L4_MAX	(EV1527_L4 *110 / 100)#define EV1527_L12			EV1527_H12 //宽脉冲基本宽度 us
#define EV1527_L12_MIN	(EV1527_L12 *90 / 100)
#define EV1527_L12_MAX	(EV1527_L12 *110 / 100)#define EV1527_SYN_L	(11981-328) // 同步脉冲低时间,高时间=EV1527_H4
#define EV1527_SYN_MIN	(EV1527_SYN_L *90 / 100)
#define EV1527_SYN_MAX	(EV1527_SYN_L *110 / 100)

初始化一个带有捕获功能的定时器,测量时间基本单位为1us:

//增强定时器0,捕获应用
void Timer0Init(void)
{PORT_Init(PORTB, PIN15, PORTB_PIN15_TIMR0_IN, 1); //pb15,timer0 in for captureTIMR_Init(TIMR0, TIMR_MODE_IC, CyclesPerUs, 0xFFFFFF, 0);TIMR_IC_Init(TIMR0, 1, 1);TIMR_Start(TIMR0);
}

定义几个变量:

static uint32_t highCnt = 0 ,lowCnt = 0; //脉冲的高电平和低电平时间
static uint32_t syn = 0,code = 0,pulseCnt = 0; //同步标志,解码后的code,解码过程中的bit计数
//解码错误后的恢复
static void EV1527Reset(void)
{highCnt = 0;lowCnt = 0;syn = 0;code = 0;pulseCnt = 0;
}

收到一个有效位后的解码:

static void EV1527Decode(uint32_t v)
{code <<= 1;if(v){code |= 1;}pulseCnt++;
//	DebugPrintf("c: %d,p= %d \r\n", v,pulseCnt);if(pulseCnt == 24){//这里可以根据需要,做不同处理://1. 连续两帧码值相同判定为一次有效码//2. 一直是同一个编码的话(中间没有被打断或者停止过),就只有第一次发送,后面的不发送。//3. 如果有需要持续按键的应用(比如按住按键调光),可以在满足第一个条件后持续的向上层发送编码信息//4. 通过消息队列将解码后的数据发送到应用DebugPrintf("Addr: %d,code= %d\r\n", code >> 4,code & 0x000000FF);EV1527Reset();}
}

捕获中断的处理,也就是一个bit(一个高电平和一个低电平)的解码,每一个脉冲的电平翻转都会产生一次中断,也就能获取到高低电平的持续时间:

void TIMR0_Handler(void)
{if(TIMR_IC_CaptureH_INTStat(TIMR0)){//脉冲的下降沿中断,也就是高电平结束了TIMR_IC_CaptureH_INTClr(TIMR0);highCnt = TIMR_IC_GetCaptureH(TIMR0);}else if(TIMR_IC_CaptureL_INTStat(TIMR0)){//脉冲的上升沿中断,也就是低电平结束了TIMR_IC_CaptureL_INTClr(TIMR0);lowCnt = TIMR_IC_GetCaptureL(TIMR0);if(syn == 1){//收到同步码后才解码if( (lowCnt > EV1527_L4_MIN) && (lowCnt < EV1527_L4_MAX)){if((highCnt > EV1527_H12_MIN) && (highCnt < EV1527_H12_MAX)){ //现在是一个短脉冲,前面必定是一个有效的长脉冲,数据为1,否则就是一个错误脉冲EV1527Decode(1);}else{EV1527Reset(); //有错误}}else if((lowCnt > EV1527_L12_MIN) && (lowCnt < EV1527_L12_MAX)){if((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX)){ //现在是一个长脉冲,前面必定是一个有效的短脉冲,数据为0,否则就是一个错误脉冲EV1527Decode(0);}else{EV1527Reset(); //有错误}}}else {if((lowCnt > EV1527_SYN_MIN) && (lowCnt < EV1527_SYN_MAX)){//有满足同步脉冲特征的低电平出现了if((highCnt > EV1527_H4_MIN) && (highCnt < EV1527_H4_MAX)){ //并且前面是一个有效的同步高脉冲,同步开始(也可能是一个误码)syn = 1;pulseCnt = 0;code = 0;
//					DebugPrintf("syn: %d\r\n", lowCnt);}}}}
}

解码程序短小精悍,有几个技巧说明如下:

  1. 由于无线模块会不断输出其他非规则的干扰脉冲,我们需要在中断中快速的处理,降低CPU的负荷。
  2. 根据ev1527的编码特征,我们可以知道无论是同步码还是数据1和数据0,必定是一个高电平后接一个低电平脉冲, 所以高电平结束我们只记录脉宽不做解码,解码在低电平结束后进行。3.
  3. 快速解码的处理方法:先寻找同步脉冲,只有同步脉冲出现后才继续解码后面的有效数据,否则都是干扰数据。
  4. 有同步脉冲后,我们只需要判定低电平脉冲的宽度,然后结合前一个高电平脉冲的宽度就能确定是数据位1还是0.
  5. 要考虑干扰和脉冲丢失的情况,如果出现这种情况,就复位相关变量,丢弃当前帧。等待下一帧数据再次解码。
  6. 因为EV1527编码并不带有任何数据校验位,为了保证数据的可靠性,我们通常会连续接收两帧数据,确认数据相同,才认为是一个有效的数据。
  7. 解码完成一帧数据后,可以根据各自的应用不同做后续处理。
    原创文章,欢迎转载,请注明来源,未经书面允许,请勿用于商业用途。
    关注微信公众号:嵌入式开发实战营,了解更多。某宝搜索<新龙电子>或者<新龙微科技>了解相关产品应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/34519.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

复分析——第7章——ζ 函数和素数定理(E.M. Stein R. Shakarchi)

第7章 ζ函数和素数定理 Bernhard Riemann, whose extraordinary intuitive powers we have already mentioned, has especially renovated our knowledge of the distribution of prime numbers, also one of the most mysterious questions in mathematics. He has tau…

《中国尘肺病农民工调查报告(2023)》

这份报告由中华社会救助基金会大爱清尘基金发布。 《中国尘肺病农民工调查报告(2023)》是一份深入探讨中国尘肺病农民工现状与挑战的研究报告。报告不仅详细记录了尘肺病患者的生存困境、经济与医疗状况,还对政策的实施效果进行了评估,并提出了针对性的建议。通过对不同地区、…

Vitis Accelerated Libraries 学习笔记--Vision 库介绍

目录 1. 简介 2. 分类介绍 2.1 图像容器 2.2 图像处理基础 2.3 图像滤波和平滑 2.4 图像变换和增强 2.5 图像分析和特征检测 2.6 数学和算术操作 2.7 图像校正和优化 2.8 颜色和阈值处理 2.9 高级图像处理 2.10 光流和运动估计 2.11 图像转换和映射 2.12 其他特殊…

Android Media Framework(八)OMXNodeInstance - Ⅰ

OpenMAX框架的学习有两大难点&#xff0c;一是组件的状态切换与buffer的流转过程&#xff0c;这部分内容我们已经在IL Spec中学习过了&#xff1b;二是OMX组件使用的buffer类型与buffer分配过程&#xff0c;这一节我们来重点剖析OMX组件使用的buffer类型。 1、引言 在实际应用…

业务架构交付物

背景 业务的核心元素、扩展元素以及它们的协同关系&#xff0c;业务架构和其他架构的关系等等已经有了不少认识&#xff0c;那么&#xff0c;通过对业务架构的还原和分析&#xff0c;到底能够得到什么业务架构的内容呢&#xff1f;它可以是一套流程框架体系&#xff0c;也可以…

探索约束LLM输出JSON的应用

0、 引言 JSON&#xff08;JavaScript Object Notation&#xff09;因其简洁、易读和易于解析的特性&#xff0c;已成为全球使用最广泛的数据交换格式之一。它能够满足各种数据交换需求&#xff0c;特别是在构建人工智能驱动的应用程序时&#xff0c;工程师们经常需要将大型语…

深度学习工具|LabelImg(标注工具)的安装与使用教程

1 简介 Label是一款免费的图像标注软件&#xff0c;可以以矩形框的形式对图像中的物体进行标记&#xff0c;常用于分类和目标检测。并可以将标记信息保存为PasclVOC&#xff08;xml&#xff09;、YOLO&#xff08;txt&#xff09;、CreateML&#xff08;json&#xff09;格式。…

Python中对含有转义字符的变量,如何处理

file_path C:\Users\EDY\PJ-IPAStudio\designer\project 这是一个路径的字符串&#xff0c;要访问这个路径下的文件&#xff0c;是会报错的 file_path rC:\Users\EDY\PJ-IPAStudio\designer\project 需要在前面添加 r 如果他是一个变量&#xff0c;如何对变量里的字符修改呢&…

0802功放2

功放要记一般的式子&#xff0c;而非最大的式子&#xff0c;因为总不能总开到最大音量上工作&#xff0c;而是在比较合适的音量上工作 运放的最大电压也是比电源低1~2V 饱和三极管的功率&#xff0c;电流越大&#xff0c;饱和压降越大&#xff1f;&#xff1f;&#xff1f;不…

STM32G474的浮点数四则运算速度实测

一、FPU的启用 FPU 即浮点运算单元&#xff08;Float Point Unit&#xff09;。浮点运算&#xff0c;对于定点 CPU&#xff08;没有 FPU 的 CPU&#xff09;来说必须要按照 IEEE-754 标准的算法来完成运算&#xff0c;是相当耗费时间的。而对于有 FPU 的 CPU来说&#xff0c;浮…

【Golang】Steam 创意工坊 Mod 文件夹批量重命名

本文将介绍一个使用Go语言编写的脚本&#xff0c;其主要功能是解析XML文件并基于解析结果重命名文件夹。这个脚本适用于需要对文件夹进行批量重命名&#xff0c;并且重命名规则依赖于XML文件内容的情况。 脚本功能概述 Steam创意工坊下载的Mod文件夹批量重命名为id名称 运行前…

Tomcat get请求传数组集合参数

前言 最近做项目&#xff0c;需要通过GET传参&#xff0c;来实现查询的能力&#xff0c;本来是RPC调用&#xff0c;直接参数序列化即可。但是服务最近修改为HTTP&#xff0c;本来Spring Cloud的feign也可以直接传参数&#xff0c;但是当使用Nginx访问时参数到底传啥呢&#xf…

iOS Swift5 视频播放

文章目录 1.截图2.代码3.导入本地文件 1.截图 2.代码 import UIKit import AVKit import AVFoundationclass ViewController: UIViewController {override func viewDidLoad() {super.viewDidLoad()view.backgroundColor .white// 创建按钮let button UIButton(type: .syste…

【学习】程序员资源网站

1 书栈网 简介&#xff1a;书栈网是程序员互联网IT开源编程书籍、资源免费阅读的网站&#xff0c;在书栈网你可以找到很多书籍、笔记资源。在这里&#xff0c;你可以根据热门收藏和阅读查看大家都在看什么&#xff0c;也可以根据技术栈分类找到对应模块的编程资源&#xff0c;…

通过InoDriverShop伺服调试软件连接汇川SV660F系列伺服的具体方法(以太网)

通过InoDriverShop伺服调试软件连接汇川SV660F系列伺服的具体方法(以太网) 具体连接伺服驱动器的步骤可参考以下内容: 启动InoDriverShop, 新建或打开工程 如下图所示,选择在线,选中SV660F图标,右侧通信类型选择“TCP—DCP”,点击下一步,同时要选择自己当前使用的网卡…

【扩散模型(一)】Stable Diffusion中的重建分支(reconstruction branch)和条件分支(condition branch)

Stable Diffusion 是一种基于扩散模型的生成模型&#xff0c;用于生成图像等数据。在解释 Stable Diffusion 的过程中&#xff0c;经常会提到两个主要的分支&#xff1a;重建分支&#xff08;reconstruction branch&#xff09;和条件分支&#xff08;condition branch&#xf…

C++多线程异步日志实现

使用C11标准&#xff0c;构建了一个方便使用的、轻量化的日志系统。封装线程安全的lockQueue&#xff0c;实现对每条日志添加信息、push到lockQueue中的LogTmp类&#xff0c;实现一个多线程异步的日志系统Logger。 lockqueue.h #pragma once #include <queue> #include…

Go微服务: redis分布式锁保证数据原子操作的一致性

概述 随着云计算和大数据技术的飞速发展&#xff0c;分布式系统已经成为现代IT架构的重要组成部分在分布式系统中&#xff0c;数据的一致性是一个至关重要的挑战&#xff0c;特别是在并发访问和修改共享资源的场景下分布式锁是一种跨进程、跨机器节点的互斥锁&#xff0c;用于…

如何模拟一个具有网络管理功能的被测件的一些思路

不知道大家有没有遇到过这个问题&#xff1f; 当我们在学习如何测试网络管理时&#xff0c;难题不在于如何编写测试脚本&#xff0c;而是编写完测试脚本后&#xff0c;没有真实被测件来让我们执行测试脚本&#xff0c;进而调试脚本。这也是我在给大家讲CANoe工具和CAPL编程语言…

08.QT控件:QWidget

一、Widget 简介 Widget 是 Qt 中的核⼼概念.。英⽂原意是 "小部件"&#xff0c;我们此处也把它翻译为 "控件"。控件是构成⼀个图形化界⾯的基本要素。 Qt 作为⼀个成熟的 GUI 开发框架, 内置了⼤量的常⽤控件。并且 Qt 也提供了 "⾃定义控件" 的…