常用MQ消息中间件Kafka、ZeroMQ和RabbitMQ对比及RabbitMQ详解

1、概述

  在现代的分布式系统和实时数据处理领域,消息中间件扮演着关键的角色,用于解决应用程序之间的通信和数据传递的挑战。在众多的消息中间件解决方案中,Kafka、ZeroMQ和RabbitMQ 是备受关注和广泛应用的代表性系统。它们各自具有独特的特点和优势,适用于不同的应用场景和需求。

  Kafka 是一个高性能、可扩展的分布式消息队列系统,被设计用于处理大规模的数据流和实时数据传输。它以其出色的吞吐量、持久性和可靠性而闻名,广泛应用于各种数据处理和事件驱动的架构中。Kafka 的设计思想注重于可扩展性和高性能,使其成为大规模数据处理和实时数据流的首选。

  ZeroMQ 是一个高性能的消息传递库,旨在提供低延迟和轻量级的消息通信。ZeroMQ 的设计目标是简化并发编程和分布式系统的开发,通过提供灵活的消息传递模式和异步通信机制,使开发人员能够轻松构建高效的通信系统。它的特点包括高性能、低延迟和可靠性,适用于需要高并发和低延迟通信的场景。

  RabbitMQ 是一个灵活的消息中间件,提供了丰富的消息路由和队列模式,以及多种协议的支持。它的设计目标是提供可靠性、灵活性和高度可定制化的消息传递解决方案。RabbitMQ 提供了多种消息传递模式,包括发布-订阅模式、消息队列模式和广播模式,可以根据需求选择适当的模式。它支持多种协议,如 AMQP、STOMP 和 MQTT,使其能够与不同的应用程序和系统进行集成。

在这里插入图片描述

2、Kafka、ZeroMQ、RabbitMQ比较

2.1 ZeroMQ

  ZeroMQ——【Zero】MQ:其实不是传统意义上的MQ。它只是一个用于网络编程的SDK,目标是给常见的网络通讯方式提供一个更好用的接口,在没有“broker”的情况下实现网络通讯。比如,想实现一个req/resp的机制。用常规的socket是个相当麻烦的事。从客户端要connect,按照报格式序列化数据,发数据,接收数据,关闭连接;而服务端要listen,accept,读取数据,发送数据……这还不算每个步骤的错误处理,缓冲区的管理,多路复用……。(所以普通人估计直接就上http了)。再比如fanout,fanin,master-worker……这些模式也都相当麻烦。而ZeroMQ提供了SDK可以帮助开发者快速实现这些功能。

https://zeromq.org/
在这里插入图片描述

ZeroMQ (also spelled ØMQ, 0MQ or ZMQ) is a high-performance asynchronous messaging library, aimed at use in distributed or 
concurrent applications. It provides a message queue, but unlike message-oriented middleware, a ZeroMQ system can run without a 
dedicated message broker.……The philosophy of ZeroMQ starts with the zero. The zero is for zero broker (ZeroMQ is brokerless), zero 
latency, zero cost (it’s free), and zero administration.

  个人认为ZeroMQ适合用来搭建一个框架,而并非被直接被业务使用。比如:ZeroMQ完全不解决消息高可用的的问题;消息落盘这种事并不在ZeroMQ的scope里。因为它和常规MQ的差异过于巨大(除了名字里带mq,和mq没有关系),从应用角度,除非是做网络编程的,不太建议进一步深入了解它。

2.2 RabbitMQ

https://www.rabbitmq.com/
在这里插入图片描述

  RabbitMQ代表了传统的broker为中心的MQ,其设计和信箱很像。被发送的消息经过1个或者多个broker的处理,最终进入一个消费者的信箱(queue)。消费者正确处理后,这个message就被删除了。如果存在多个不同的,彼此独立的consumer,可以设置各自独立的queue,各不影响。这里说”以broker为中心“就是着重强调”转发能力”。一个broker可以根据路由规则进行投递,可以fanout,可以根据tag做部分message的过滤。多个broker之间还可以“接力”。message还能有TTL生命周期。在复杂的企业级信息系统里实现message通讯和协作。RabbitMQ也满足多个标准,如AMQP,MQTT,STOMP等。遵守这些协议可以帮助上游在多个MQ上做迁移。

  这类MQ从使用者角度,用起来非常方便。producer只管发,consumer只管收。业务逻辑都是broker上面配置。但这种设计也带来一些根本性的问题,让他非常不适合在一些场景中使用。

  • 首先是保序性。RabbitMQ(或者这类MQ)都只能保证在单broker+单consumer+不自动进入死信队列的情况下实现保证严格的顺序。但是单broker+单consumer是不可扩展的,无法实现更高的吞吐。类似于数据库Syncer之类需要严格顺序的服务就无法实现了。
  • 因为存在多个queue,因此一个message可能被写入多次,存在写放大的问题。但既然支持了多个queue,就不可能不复制message。那么吞吐就会受到极大的影响。类似于日志流式处理的场景就无法支持了。
  • 一个message被消费了,就会被清理。那么如果一个流处理存在bug,产生了错误的结果,就意味着无论如何都无法重新修正了。除非数据源可以把messge重新发一遍。如果MQ拓扑很复杂,这几乎就不可能。类似的,也没法做到“半夜把白天的数据用批处理重新跑一遍”之类的事情。

2.3 Kafka

https://kafka.apache.org/
在这里插入图片描述

  Kafka从一开始就实现了一个和传统的MQ完全不同的”MQ“。它的出现一开始就是面向大数据,高吞吐的场景。尽管Kafka里也有个“broker”。但这个broker干的事情和RabbitMQ的“根据业务逻辑转发和处理”完全不同。Kafka的broker仅仅是以理论上最快的速度来将消息写入,供consuemr读取。在磁盘上,最快的写入就是顺序写(当时HDD还大量存在,HDD的顺序写和随机写的性能差异比SSD大得多)。因此Kafka的broker就是将数据的以“Append only”的形式写入文件。(对比传统MQ一般会用某种数据库)。这个Append only file模型上实际就是个log(留意这里的log的意思并不是业务日志,是指总是追加写的数据模型)。

  kafka就实现了一个可以极大吞吐的,有顺序保证的,可以被反复消费log文件队列。而log这种数据模型,其实是很多数据系统的内部核心数据结构。比如在mysql中有binlog负责主从同步,redo log负责数据恢复;在raft中每个节点都会维护一个log做total order broadcast等等。在2010~2015年,因为大数据流式处理的兴起,Kafka成为数据分析领域无可替代的中间件(后来才有了RocketMQ和pulsar)。而对于大多数线上处理,只需要消息1跳的场景,不需要灵活配置转发规则的场景,Kafka也可以用。且吞吐高,相对的省资源,还可以省一套运维,顶多就是费点磁盘(便宜得很)。因此很多公司会选择运维几套不同的Kafka集群同时支持线上和离线业务。

2.4 优缺点对比

在这里插入图片描述

3、RabbitMQ详解

在这里插入图片描述

3.1 RabbitMQ的起源

  RabbitMQ的诞生可以追溯到电信行业。它最初是为了满足电信业务中对可靠通信的需求而开发的。作为少有的几款支持AMQP(Advanced Message Queuing Protocol,高级消息队列协议)的产品之一,RabbitMQ自推出以来就受到广泛关注和应用。AMQP协议的设计初衷是为了在不同系统之间实现可靠、高效的消息传递,而RabbitMQ作为其实现者,自然具备了这些优秀特性。

3.2 RabbitMQ的优点

  • 轻量级,快速,部署使用方便

  RabbitMQ的设计非常轻量级,启动速度快,占用资源少,这使得它在各种环境下都能快速部署和运行。无论是开发环境还是生产环境,RabbitMQ的安装和配置都非常简单友好。你只需几条命令或几个点击就能启动一个RabbitMQ实例,轻松开始你的消息队列之旅。

  • 支持灵活的路由配置

  在RabbitMQ中,消息的生产者和消费者之间有一个非常重要的角色——交换器(Exchange)。交换器根据预先配置的路由规则,将生产者发送的消息路由到不同的队列中。这种设计使得RabbitMQ的路由规则非常灵活,你可以根据业务需求,配置多种不同类型的交换器(如直接交换器、主题交换器、扇出交换器等),甚至可以实现自定义的路由逻辑。这种灵活性使得RabbitMQ在各种复杂的消息传递场景中都能应对自如。

  • 多语言客户端支持

  RabbitMQ的另一个优点是其广泛的客户端支持。无论你是使用Java、Python、Ruby、JavaScript,还是其他编程语言,RabbitMQ都能提供相应的客户端库,使得你可以方便地将RabbitMQ集成到你的应用中。同时,由于RabbitMQ遵循AMQP协议,这也意味着你可以使用任何符合AMQP标准的客户端与之通信,这大大增加了系统集成的灵活性。

3.3 RabbitMQ的缺点

  • 大量消息堆积时性能下降

  虽然RabbitMQ在大多数情况下表现优异,但当队列中堆积了大量消息时,其性能会明显下降。这是因为RabbitMQ需要在内存中维护这些消息,同时还要处理消息的持久化和消费请求。当消息量达到一定程度后,RabbitMQ的处理能力会受到影响,导致消息处理速度变慢。因此,在设计系统时,需要考虑消息的处理和清理机制,避免大量消息长期堆积在队列中。

  • 每秒处理消息量有限

  如果你的应用需要每秒处理几十万甚至上百万条消息,那么RabbitMQ可能不是最优选择。虽然RabbitMQ在很多中小型场景中表现出色,但在极高性能要求的场景下,其处理能力还是有限的。在这种情况下,你可能需要考虑一些专为高吞吐量设计的消息队列产品,如Apache Kafka。

  • 功能扩展和二次开发代价高

  RabbitMQ是用Erlang语言开发的,这种语言虽然在并发处理和分布式系统方面有独特的优势,但其学习曲线相对较陡。对于大多数开发者来说,使用和扩展RabbitMQ的功能可能需要一定的学习成本。此外,由于Erlang社区相对较小,相关资源和支持也比较有限,这在一定程度上增加了功能扩展和二次开发的难度。

3.4 RabbitMQ的使用场景

  RabbitMQ作为一个成熟、稳定的消息队列产品,在很多场景下都能发挥重要作用。它轻量级、快速、易于部署,支持灵活的路由配置和多种编程语言客户端,使得它在各种复杂的消息传递场景中都能应对自如。当然,在使用RabbitMQ时,我们也需要注意其在高性能和大消息量场景下的局限,合理设计系统架构,避免性能瓶颈。以下是一些RabbitMQ常见的使用场景:

  • 异步处理
      在很多Web应用中,为了提升响应速度,常常需要将一些耗时操作异步处理,比如发送邮件、生成报表等。RabbitMQ可以帮助我们将这些任务放入队列,后台处理,从而提升系统的响应速度和用户体验。
  • 负载均衡

  在分布式系统中,通过将任务分发到多个工作节点,可以实现负载均衡,提升系统的处理能力和可靠性。RabbitMQ通过其灵活的路由和队列机制,可以很好地实现任务的分发和负载均衡。

  • 日志收集和分析

  在大数据时代,日志的收集和分析变得非常重要。通过RabbitMQ,可以将各个系统模块的日志统一收集起来,发送到日志处理和分析系统中,帮助我们实时监控和分析系统运行情况。

  • 微服务通信

  在微服务架构中,各个服务之间常常需要进行大量的通信。通过RabbitMQ,可以实现可靠、灵活的服务间消息传递,提升系统的可扩展性和可靠性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/34185.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CST电磁仿真软件的参数类型和含义【电磁仿真入门教程】

如果你是一位工程师或设计师,那你对电磁仿真软件CST Studio Suite一定不会感到陌生。CST软件可以帮助你模拟电磁场和电路行为,从而优化产品设计。本文将带你了解CST电磁仿真软件的一些关键参数,并解释其含义。CST电磁仿真软件的参数是指在使用…

安规管理:PLM安规管理、PLM安规管理新策略

安规管理:PLM安规管理、PLM安规管理新策略 随着科技的飞速发展,电子产品已经成为我们生活中不可或缺的一部分。然而,这些产品在给人们带来便利的同时,也可能带来触电、火灾、有害辐射等安全隐患。为了保护消费者的生命财产安全&am…

JavaScript全屏,监听页面是否全屏

在JavaScript中,直接监听浏览器是否进入全屏模式并不直接支持,因为全屏API主要是关于请求和退出全屏模式的,而没有直接的监听器可以告知页面何时进入或退出全屏模式。但是,你可以通过在你的代码中跟踪全屏状态的改变来模拟这个功能…

性能测试学习-执行测试脚本,监控性能指标

1、关于使用pymatlab库实现对数据表的增加,获取指定列操作,并在另一个py文件中调用 cursor游标的使用 """ 实现数据连接,并操作数据库,生成随机的用户数据 使用游标 """ import randomimport pym…

超越云端:Octopus v2端侧部署实现高效能语言模型

在人工智能领域,大型语言模型虽然在云端环境中展现出卓越的性能,但它们在隐私保护、成本控制以及对网络连接的依赖性方面存在不足。这些问题限制了AI技术在移动设备和边缘计算场景中的应用潜力。为了克服这些限制,研究者们一直在探索如何在设…

机器学习补充

一、数据抽样 数据预处理阶段:对数据集进行抽样可以帮助减少数据量,加快模型训练的速度/减少计算资源的消耗,特别是当数据集非常庞大时,比如设置sample_rate0.8.平衡数据集:通过抽样平衡正负样本,提升模型…

揭秘shopee、Lazada爆单秘诀:自养号补单策略大公开

在东南亚的电商跨境领域,Shopee和Lazada无疑占据了举足轻重的地位,为印地、马来、台湾、菲律宾、新加坡、泰国和越南等地的消费者提供了丰富的在线购物选择。随着电商竞争的日益激烈,许多商家开始探索各种有效的推广策略,其中&…

没有SSL证书,会造成哪些影响?

没有SSL证书,网站及其用户将会面临多种安全隐患和负面影响,主要包括但不限于以下几点: 1、安全警告:现代浏览器如谷歌Chrome会在用户尝试访问没有SSL证书的网站时显示明显的警告信息,如“不安全”标签,这会…

F407核心板小板快速入门000

1、现在实验室用的F407核心板有两个类型。都是用反客科技的板子。 一个是STM32F407ZGT6型号的FM板卡。一个是stm32F407VET6的板子FK板卡。前者是我们做工程训练大赛用到的。后者是做其他没有那么复杂的项目比如大创、电赛、机器人大赛等使用,板卡尺寸更小。 前者的参…

C++ 结构体对齐详解

目录 前言 一、为什么要对结构体进行对齐操作? 二、基本概念 三、 对齐规则 四、示例讲解 1.简单的变量对齐 2.结构体包含有结构体的对齐 结构体成员详细解析 五、使用指令改变对齐方式 __attribute__((packed)) #pragma pack(push, n) #pragma pack(pop) …

Java中如何处理XML数据?

Java中如何处理XML数据? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨在Java中如何高效处理XML数据的技术和最佳实践。XML&…

Elasticsearch:赋能数据搜索与分析的利器

Elasticsearch:赋能数据搜索与分析的利器 在大数据的时代背景下,如何高效地搜索、分析和利用数据成为了企业和开发者面临的重要问题。Elasticsearch,作为Elastic Stack的核心组件,以其分布式、高扩展性和实时的搜索与分析能力&am…

【CentOS7】Linux安装Docker教程(保姆篇)

文章目录 查看是否已安装卸载(已安装过)docker安装友情提示 更多相关内容可查看 注:本篇为Centos7安装Docker,若为其他系统请理性参考 查看是否已安装 如果已安装,请卸载重新安装 docker --version这里显示已安装 …

人机的三级抽象

数学的三级抽象包括第一级抽象是数表示万物、第二级抽象是字母表征数、第三级抽象是运算规则的抽象(如群论),在人机交互中,类比于数学的三级抽象,可以理解为: 第一级抽象:用户界面和操作的抽象化…

力扣第210题“课程表 II”

在本篇文章中,我们将详细解读力扣第210题“课程表 II”。通过学习本篇文章,读者将掌握如何使用拓扑排序来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。 问题描述 力扣第210题“…

Linux 服务管理

服务(service)本质就是进程,但是是运行在后台的,通常都会监听某个端口,等待其它程序的请求,比如(mysqld , sshd防火墙等),因此又称为守护进程。 比如通过xshell进行连接的时候,需要输入的端口号就是通过守护…

2023年全国职业院校技能大赛(高职组)“云计算应用”赛项赛卷8(容器云)

#需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包…

基于Java图书馆管理系统详细设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…

iptables(4)规则匹配条件(源、目、协议、接口、端口)

简介 前面我们已经介绍了iptables的基本原理,表、链,数据包处理流程。如何查询各种表的信息。还有基本的增、删、改、保存的基础操作。 经过前文介绍,我们已经能够熟练的管理规则了,但是我们只使用过一种匹配条件,就是将”源地址”作为匹配条件。那么这篇文章中,我们就来…

[职场] 教师资格面试流程 #经验分享#其他

教师资格面试流程 教师资格证面试流程如下: ①候考。在考试当日,考生按照准考证上的时间进入候考室,进行抽签分组。 ②抽题。考生按照抽签顺序分组安排从面试题库系统试题组中任选其中一道试题,确认抽题后,计算机打印出…