群组分析方法

目录

1.什么是群组分析方法

2.基本原理

3.群组分析方法分类

3.1.层次方法

3.2.划分方法

3.3.密度基方法

​​​​​​​3.4.模型基方法

4.群组评估

5.应用步骤


1.什么是群组分析方法

        群组分析(Cluster Analysis)是数据分析中的一种重要方法,旨在将数据集中的对象分组成为数个群组或簇(cluster),在同一个簇内的对象相似程度较高,不同簇内的对象差异较大。广泛应用于各个领域,包括市场细分、社会科学研究、生物学、医学等。

2.基本原理

        群组分析的基本原理是计算数据中各对象之间的相似性或距离,根据这些相似性或距离将对象划分为不同的群组。制定一个合理的相似性衡量标准和距离测度是进行有效群组分析的前提。常用的相似性和距离测度包括欧氏距离、曼哈顿距离、余弦相似性、汉明距离等。选择何种测度取决于数据的特性及研究目的。

3.群组分析方法分类

        群组分析方法主要包括:层次方法、划分方法、密度基方法和模型基方法。

3.1.层次方法

        按照数据间的亲疏关系将它们逐步聚合成树状结构图,可以进一步细分为凝聚法(自下而上合并)和分裂法(自上而下分割)。层次聚类不需要事先指定簇的个数,但计算复杂度较高,不适合大规模数据集。

​​​​​​​3.2.划分方法

        最典型的算法是K-means,试图找到数据空间中的K个点作为各个簇的中心点,然后根据数据点与这些中心点的距离将数据分类。划分方法适用于大数据集,并且计算快速,但是需要预先设定簇的数量K,且结果可能对初始值选择敏感。

        这里展开说一下K-means。是一种常用的聚类算法,主要思想是将数据集中的样本根据特征的相似性分成K个簇。是无监督学习的一种,在执行过程中,不需要预先标记的训练数据。

        K-means算法的执行步骤通常如下:

        首先,选择K个初始质心作为簇的中心点。可以是随机选择的数据点,也可以通过其他方法得到。

        然后,对每个数据点计算其与K个质心之间的距离,并将其归类到距离最近的质心对应的簇中。

        接下来,更新每个簇的质心,使得簇内所有样本到该质心的平均距离最小化。重复上述两个步骤,直到满足停止条件(如达到最大迭代次数或簇的质心不再发生变化)。

        最后,得到K个簇,每个簇由一组样本组成,并且簇内样本的相似性最高,而不同簇之间的样本较为不相似。

        K-means算法是一种迭代的优化过程,目标是最小化簇内样本的方差,使得簇内样本之间的相似度最大化。K-means算法对于处理大规模数据和发现隐藏的模式非常有效。

        K-means算法也有一些局限性和注意事项。由于初始质心的选择可能会影响最终的结果,因此需要谨慎选择初始质心。K-means对离群点敏感,对于不同形状、大小和密度的簇可能表现不佳。在实际应用中,需要结合领域知识和对数据的理解来调整参数并进行后处理,以获得更好的聚类结果。

        K-means算法是一种简单且高效的聚类方法,能够帮助我们对数据进行有意义的分组和分类,挖掘出数据背后的结构和规律。

​​​​​​​3.3.密度基方法

        例如DBSCAN算法,根据区域的密度来形成簇,能够识别任意形状的簇,并对噪声有较好的鲁棒性。不需要事先指定簇的数量,但需要设定密度阈值。

        DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种用于聚类分析的非参数化方法。基于密度的概念,能够发现任意形状的聚类,并且能够在存在噪声的情况下有效工作。DBSCAN算法的核心思想是通过确定数据点周围的密度来聚类数据。在DBSCAN中,每个数据点被视为具有两种状态:核心点和边界点。

        核心点是指在特定半径ε内至少包含MinPts个点的数据点。这意味着核心点位于相对较密集的区域中。边界点是指在ε邻域内的点数少于MinPts,但是位于核心点的ε邻域内的点。换句话说,边界点位于相对较稀疏的区域但又靠近核心点所在的区域。

        DBSCAN算法的步骤如下:

  • 选择一个未被访问的数据点P:开始时,选择一个未被标记的数据点作为种子点。检查该点的ε邻域内的点数:计算该点的ε邻域内包含的点数。
  • 判断是否为核心点或者边界点:如果ε邻域内的点数大于等于MinPts,则将该点标记为核心点,并将其邻域内的所有点添加到同一个簇中。否则,将该点标记为噪声点。
  • 扩展聚类:对于每个核心点,通过迭代地访问其邻域内的点,将其加入同一簇中。如果邻域内的点也是核心点,则继续扩展该簇,直到无法再找到新的核心点。
  • 标记噪声点:将未分配到任何簇的噪声点标记为噪声或者选择性地将其分配到最近的簇中。

        DBSCAN的优势在于:

  • 能够发现任意形状的簇,对数据的分布不做任何假设;
  • 能够处理噪声和离群点;
  • 不需要预先指定簇的数量。

        DBSCAN也有一些缺点,例如对于密度不均匀的簇效果可能不理想,对于高维数据的计算复杂度较高等。在实际应用中,需要根据数据的特点选择合适的聚类算法。

​​​​​​​3.4.模型基方法

例如使用高斯混合模型(GMM),通过假定数据是由若干分布参数不同的正态分布混合产生的,利用EM(期望最大化)算法来估计这些分布的参数并进行聚类,这种方法能够提供概率框架,并可应用于更复杂的聚类问题。

4.群组评估

        聚类效果的评估可以使用如轮廓系数(Silhouette Coefficient)、戴维森堡丁指数(Davies-Bouldin Index)等内部评价指标,以判断一个数据点是否被划入合适的群组,或者使用外部标准如纯度(Purity)来比较群组分析结果与已知类别的一致性。

5.应用步骤

数据准备:

        包括数据清洗、缺失值处理、归一化等预处理步骤。

特征选择:

        选择最能体现数据特征的变量,以降低维度并提高分析效率。

        选择合适的聚类算法及其参数。

        运行聚类算法得到初始的群组划分。

        对群组划分结果进行评估和优化。

        分析解释群组结果,并根据需求做出相应的决策或采取行动。

        群组分析在实际应用中需要考虑数据的特有属性和分析的特定目的,不大可能一套步骤适用于所有情境。数据科学家需要对不同的群组分析方法有深入了解,并结合具体问题灵活运用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/3360.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMWare vmdk文件非常大解决

你如果发现你的虚拟机占用了几百个GB的空间想要变小,在我使用电脑中有一个虚拟机放在了D盘的vm7.9文件夹中。D盘总容量为1TB,但是扯淡的是一个虚拟机占用了600多个GB空间,我按照下面流程执行了最终变为了使用200多GB。 虚拟机经过长时间使用以及各种操作…

北航计算机软件技术基础课程作业笔记【5】

题目 (文章一周后公开~) sort 1.快排算法 核心思路:选取(一般是)当前数组第一个元素作为中间值mid,将数组按照比mid小/大分为两半,再对子数组进行同样操作(二叉树前序遍历) 具体操作:主要是分2半那里,可以巧妙一些地来遍历,所以用到了left和right指针(重合时就遍…

【Redis】面试题汇总

Redis什么是Redis、使用场景有哪些Redis 为什么这么快?Redis 数据类型及使用场景五种常见的 Redis 数据类型是怎么实现?Redis是单线程吗Redis 采用单线程为什么还这么快?Redis 如何实现数据不丢失?Redis 如何实现服务高可用&#…

基于Linux的Ncurse库的贪吃蛇项目

贪吃蛇项目的意义 承上启下:从C语言基础的学习:数据结构链表基础、C变量、流程控制、函数、指针、结构体等。过渡到Linux系统编程:文件编程、进程、线程、通信、第三方等。 Linux终端图形库curses curses的名字起源于"cursor optimiz…

Oracle Analytics BIEE 操作方法(五)仪表盘导出“区域”不换行也不合并居中的方法

1 分析 取消所有区域内列格式里面的换行 2 仪表盘 点击“工具” 打印和导出选项 设置固定列宽(范围是:0-300)

Day22 SSH远程管理服务

sshd服务,系统自带,默认开机自启运行 云/物理服务器的安全组和防火墙默认放行该端口 软件包:openssh-server(服务端);openssh-client(客户端); 格式:ssh I…

【学习笔记二十七】EWM存储类型控制

一、EWM存储类型控制概述 Storage control 是用来决定仓库产品移动时所需要的流程步骤。它的目的是用来处理基于仓库物理布局及仓库流程所要求的复杂的上架和下架流程步骤。 仓库里常见的操作步骤有:Picking、Packing、Staging、Loading、Putaway、Unloading、Counting、Quali…

Jetbrains Fleet这十个快捷键,效率提高50倍

当我们无法解决一段感情中的问题 就会选择解决这段感情 如果真诚不得到回应 那么再热情的人 也会沉默 很多人对你感兴趣 却没有人执着于你 我们知道任何一款牛批的IDE 都是有很多快捷键的,但是我们没有superpower ,不能记住所有的快捷键。 所以下面…

成功密码期刊投稿简介

《成功密码》综合版是由国家新闻出版总署批准,江西省教育厅主管的正规期刊,"以培养担当民族复兴大任的时代新人为着眼点,强化教育引导、实践养成、制度保障",倡导教育研究的学术水准,注重理论与实践的有机结…

Delphi 的Show和ShowModal

Show没有返回值是一个过程,焦点可以不在当前窗体; 用法新建一个子窗体: 主窗体: 调用,引用子窗体的单元 调用 showmodal是一个函数有返回值,窗体的处理结果,且只能聚焦到当前窗体 效果都能展示…

尺取法知识点讲解

一、固定长度的情况: 最小和(sum) 输入N个数的数列,所有相邻的M个数的和共有N-M1个,求其中的最小值。 输入格式 第1行,2个整数N,M,范围在[3…100000],N>M。 第2行,有N个正…

C++多线程系列——std::future | std::promise

获得线程执行任务的结果 在 C 11 之前,想要从线程返回执行任务的结果,可以通过指针来完成。 void fun(int x, int y, int* ans, std::condition_variable &cv) {// 模拟求值之前的准备工作this_thread::sleep_for(3s);*ans x y;cv.notify_one();…

一文掌握Vue3:深度解读Vue3新特性、Vue2与Vue3核心差异以及Vue2到Vue3转型迭代迁移重点梳理与实战

每次技术革新均推动着应用性能与开发体验的提升。Vue3 的迭代进步体现在性能优化、API重构与增强型TypeScript支持等方面,从而实现更高效开发、更优运行表现,促使升级成为保持竞争力与跟进现代前端趋势的必然选择。本文深度解读Vue3 响应式数据data、生命…

蓝桥杯python考级整理

4_1:算术运算符 4_2:基本语法 4_3:基本语法 4_4:列表 4_5:函数 4_6:字符串 4_7:列表 4_8:逻辑运算符 4_9:字典 4_10:函数

MacOS通过命令行开启关闭向日葵远程控制的后台服务

categories: [Tips] tags: MacOS Tips 写在前面 经常有小伙伴问我电脑相关的问题, 而解决问题的一个重要途径就是远程了. 关于免费的远程工具我试过向日葵和 todesk, 并且主要使用向日葵, 虽然 MacOS 下要设置很多权限, 但是也不影响其丝滑的控制. 虽然用着舒服, 但是向日葵…

mysql的约束和表关系

根据查询的结果,复制出一个新表 create table newTable AS select * from oldTable; create table newPeople AS select * from day2_test.people; 约束 引入:如果某一列如id列,有重复的数据,无法准确定位,有的列有空…

人脸清晰修复神器CodeFormer

随着AI技术在图像处理领域大展身手,AI去马赛克相关的项目也屡见不鲜,比如在Github上开源免费、备受欢迎的 CodeFormer 。不得不说利用这款神奇的人脸修复工具,真的是让我大开眼界,竟然可以这样搞! 不管面对的是多么模…

大模型+多模态实现

那么如何在预训练LLM的基础上引入跨模态的信息(包括图像、语音、视频模态),让其变得更强大、更通用呢?本节将介绍“大模型多模态”的3种实现方法。 以LLM为核心,调用其他多模态组件 微软亚洲研究院(MSRA&…

Java基础(运算符)

运算符 运算符和表达式 运算符:对字面量或者变量进行操作的符号 表达式:用运算符把字面量或者变量连接起来,符合java语法的式子就可以称为表达式;不同运算符连接的表达式体现的是不同类型的表达式。 算术运算符(加…

Linux基础命令[24]-su

文章目录 1. su 命令说明2. su 命令语法3. su 命令示例3.1 不加参数3.2 -(登录)3.3 -c(执行命令) 4. 总结 1. su 命令说明 su:以用户身份执行命令,基本信息如下: Usage:su [options] [-] [USE…