深度神经网络——什么是小样本学习?

引言

小样本学习是指使用极少量的训练数据来开发人工智能模型的各种算法和技术。小样本学习致力于让人工智能模型在接触相对较少的训练实例后识别和分类新数据。小样本训练与训练机器学习模型的传统方法形成鲜明对比,传统方法通常使用大量训练数据。小样本学习是 主要用于计算机视觉。

为了对小样本学习有更好的直觉,让我们更详细地研究这个概念。 我们将研究小样本学习背后的动机和概念,探索一些不同类型的小样本学习,并涵盖高层小样本学习中使用的一些模型。 最后,我们将研究一些小样本学习的应用程序。

“小样本学习”描述了训练机器学习模型的实践 用最少的数据量。 通常,机器学习模型是根据大量数据进行训练的,数据越大越好。 然而,由于几个不同的原因,小样本学习是一个重要的机器学习概念。

使用小样本学习的原因之一是它可以大大减少训练机器学习模型所需的数据量,从而减少标记大型数据集所需的时间。 同样,在使用通用数据集创建不同样本时,小样本学习减少了为各种任务添加特定特征的需要。 理想情况下,少量学习可以使模型更加稳健,并且能够基于较少的数据识别对象,从而创建更通用的模型,而不是标准的高度专业化模型。

小样本学习最常用于计算机视觉领域,因为计算机视觉问题的本质需要大量数据或灵活的模型。

子类别

“小样本”学习实际上只是一种使用很少训练样本的学习类型。 由于您仅使用“一些”训练示例,因此少数样本学习的子类别也涉及使用最少量的数据进行训练。 “一次性”学习是另一种类型的模型训练,涉及教导模型在仅看到该物体的一张图像后识别该物体。 一次性学习和几次学习所使用的一般策略是相同的。 请注意,术语“小样本”学习可以用作总括术语来描述使用很少数据训练模型的任何情况。

小样本学习的方法

大多数小样本学习方法可以分为三类之一:数据级方法、参数级方法和基于度量的方法。

数据级方法

小样本学习的数据级方法在概念上非常简单。 为了在没有足够的训练数据时训练模型,您可以获取更多的训练数据。 数据科学家可以使用多种技术来增加他们拥有的训练数据量。

类似的训练数据可以支持您正在训练分类器的确切目标数据。 例如,如果您正在训练分类器识别特定种类的狗,但缺乏您尝试分类的特定物种的许多图像,则可以包含许多狗的图像,这将帮助分类器确定构成狗的一般特征。

数据增强可以为分类器创建更多训练数据。 这通常涉及对现有训练数据应用转换,例如旋转现有图像,以便分类器从不同角度检查图像。 GAN 还可以根据从您拥有的少数真实训练数据示例中学到的知识来生成新的训练示例。
在这里插入图片描述

参数级方法

元学习

小样本学习的一种参数级方法涉及使用一种称为“元学习”。 元学习涉及 教模型如何学习 哪些特征在机器学习任务中很重要。 这可以通过创建一种方法来调节如何探索模型的参数空间来实现。

元学习使用两种不同的模型:教师模型和学生模型。 “教师”模型和“学生”模型。 教师模型学习如何封装参数空间,而学生算法学习如何识别和分类数据集中的实际项目。 换句话说,教师模型学习如何优化模型,而学生模型学习如何分类。 教师模型的输出用于训练学生模型,向学生模型展示如何协商因训练数据太少而产生的大参数空间。 因此,元学习中的“元”。

小样本学习模型的主要问题之一是它们很容易在训练数据上过度拟合,因为它们经常具有高维空间。 限制模型的参数空间解决了这个问题,虽然可以通过应用正则化技术和选择适当的损失函数来实现,但使用教师算法可以显着提高少数样本模型的性能。

几次学习分类器模型(学生模型)将努力基于其提供的少量训练数据进行泛化,并且通过教师模型引导其通过高维参数空间,可以提高其准确性。 这种通用架构被称为“基于梯度”的元学习器。

训练基于梯度的元学习器的完整过程如下:

  1. 创建基础学习者(教师)模型
  2. 在支持集上训练基础学习器模型
  3. 让基础学习器返回查询集的预测
  4. 根据分类误差产生的损失训练元学习者(学生)

元学习的变体

与模型无关的元学习 是一种用于增强我们上面介绍的基于梯度的基本元学习技术的方法。

正如我们上面所讨论的,基于梯度的元学习器使用教师模型获得的先验经验 来微调自己 和 提供更准确的预测 对于少量的训练数据。 然而,从随机初始化的参数开始意味着模型仍然有可能过度拟合数据。 为了避免这种情况,通过限制教师模型/基础模型的影响来创建“模型无关”元学习器。 学生模型不是直接根据教师模型做出的预测的损失来训练学生模型,而是根据自己的预测损失进行训练。

对于训练与模型无关的元学习器的每一集:

  1. 创建当前元学习器模型的副本。
  2. 副本在基础模型/教师模型的帮助下进行训练。
  3. 该副本返回训练数据的预测。
  4. 计算损失用于更新元学习器。

度量学习

设计几次学习模型的度量学习方法 通常涉及 此 使用基本距离度量 对数据集中的样本进行比较。 余弦距离等度量学习算法用于根据查询样本与支持样本的相似性对查询样本进行分类。 对于图像分类器来说,这意味着仅根据表面特征的相似性对图像进行分类。 选择图像支持集并将其转换为嵌入向量后,对查询集进行同样的操作,然后比较两个向量的值,分类器选择与向量化查询集值最接近的类。

更先进的基于度量的解决方案是“原型网络”。 原型网络将聚类模型与上述基于度量的分类相结合,将数据点聚类在一起。 与 K 均值聚类一样,聚类的质心是针对支持集中的类和查询集中的类计算的。 然后应用欧几里德距离度量来确定查询集和支持集质心之间的差异,将查询集分配给更接近的支持集类。

大多数其他小样本学习方法只是上述核心技术的变体。

小样本学习的应用

小样本学习在数据科学的许多不同子领域都有应用,例如计算机视觉、自然语言处理、机器人、医疗保健和信号处理。

计算机视觉领域的小样本学习应用包括高效的字符识别、图像分类、对象识别、对象跟踪、运动预测和动作定位。 用于小样本学习的自然语言处理应用包括翻译、句子完成、用户意图分类、情感分析和多标签文本分类。 小样本学习可用于机器人领域,帮助机器人通过几次演示来学习任务,让机器人学习如何执行动作、移动和导航周围的世界。 小样本药物发现是人工智能医疗保健的一个新兴领域。 最后,小样本学习可用于声学信号处理,这是一种分析声音数据的过程,让人工智能系统仅基于几个用户样本或从一个用户到另一个用户的语音转换来克隆语音。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/31993.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【IC验证】UVM实验lab03

1. TLM端口的创建、例化与使用 创建: uvm_get_blocking_port #(fmt_trans) mon_bp_port; 例化: function new(string name "mcdf_refmod", uvm_component parent);super.new(name, parent);fmt_trans new("fmt_trans", this);…

HMI之王 STM32H7S7

还要什么自行车啊 感谢原厂精彩培训和慷慨赠板! 以下列示几个关注的点,计划做成系列,随缘更新,尽量填。 0)1024*600分辨率配5寸触屏;Type-C with USB 2.0 HS interface, dual‑role‑power 终于不用2根线…

为何人类需重复学习与记忆?人工智能与人类认知机制的融合 —— 生物体AI

零、 AI 与人的认知背景知识 人作为一种生物智能体,学习和记忆的过程往往需要重复与实践。这是因为人的大脑并非一次性就能完美地吸收和储存信息,而是通过反复的认知加工,将短期记忆转化为长期记忆,并通过深度理解、归纳总结以及…

excel数据透视

Excel中,数据透视图(PivotChart)和数据透视表(PivotTable)是两个紧密相关的工具,用于分析数据。数据透视表是数据透视图的数据源,也就是说,数据透视图是基于数据透视表中的数据创建的…

区块链媒体发布推广秘籍大揭秘-华媒舍

区块链技术迅猛发展,成为全球瞩目的热门领域。随之而来的是区块链媒体的兴起,成为传播和推广区块链知识、项目和应用的重要平台。本文将揭示区块链媒体发布推广的秘籍,为读者深入了解该领域提供详尽科普介绍。 一、什么是区块链媒体&#xff…

【活动】TSRC反爬虫专项正式启动!

活动时间 即日起 ~ 2024年7月5日 18:00 测试范围:微信公众号、腾讯新闻等 测试域名:mp.weixin.qq.com 微信公众号相关接口 1. 微信公众号文章列表 2. 历史文章 3. 文章详细内容 注:详情报名后公布。反爬虫专项将不定期上线新业务&#xf…

亚马逊测评:从底层硬件到软件控制,全方位打造安全测评环境

在竞争激烈的测评市场中,构建一个稳定高效的模拟环境体系是赢得竞争的关键所在。然而,现有的虚拟环境方案如虚拟机、模拟机、GCS系统、云手机以及VPS服务等不仅费用昂贵,而且面临着在风控严密的平台上如亚马逊难以逃避检测的问题,…

力扣SQL50 每月交易 I 求和 SUM(条件表达式) DATE_FORMAT(日期,指定日期格式)

Problem: 1193. 每月交易 I 👨‍🏫 参考题解 Code select DATE_FORMAT(trans_date, %Y-%m) AS month,country,count(*) as trans_count,count(if(state approved, 1, NULL)) as approved_count,sum(amount) as trans_total_amount,sum(if(state appr…

Linux的shell语法

Linux的shell脚本 1.概述 shell解释器,介于操作系统内核与用户之间,充当了一个“命令解释器”的角色,负责接收用户输入的操作指令(命令)并进行解释,将需要执行的操作传递给内核执行,并输出执行…

关于使用绿联 USB-A转RJ45 2.5G网卡提速的解决问题

问题 网络下载速率低 我的自带网卡是 I219v 在嵌入了2.5G网络后一直无法到达1.5G以上。 平均测速300~500M 解决方案 更新了USB的网卡驱动 禁用了 I219-V的驱动。测速即可 USB下载地址 https://download.csdn.net/download/qq_28198181/89468806

库卡机器人减速机维修齿轮磨损故障

一、KUKA机器人减速器齿轮磨损故障的原因 1. 润滑不足:润滑油不足或质量不佳可能导致齿轮磨损。 2. 负载过重:超过库卡机械臂减速器额定负载可能导致齿轮磨损。 3. 操作不当:未按照说明书操作可能导致KUKA机器人减速器齿轮磨损。 4. 维护不足…

替换或重写Tomcat内置的404页面

替换或重写Tomcat内置的404页面 准备一个Tomcat隐藏Tomcat的相关信息纯净版的Tomcat解决Tomcat启动乱码的问题 替换或重写Tomcat内置的404页面创建新的首页和错误页面页面代码如下所示:创建首页index.html创建error_404.html页面创建其他错误页面创建编写web.xml&am…

当Windows台式电脑或笔记本电脑随机关机时,请先从这8个方面检查

序言 你的Windows笔记本电脑或PC是否意外关闭?笔记本电脑电池故障、电源线松动、过热、电源设置错误、驱动程序过时或电脑组件故障等问题都可能是罪魁祸首。如果你对这个问题感到沮丧,试试这些解决方案。 进行一些初步检查 与从电池中获取电力的笔记本电脑不同,台式电脑依…

移动端+PC端应用模式的智慧城管综合执法办案平台源码,案件在线办理、当事人信用管理、文书电子送达、沿街店铺分析

城市管理综合执法管理平台实现执法办案、业务全流程在线办理,依托移动端PC端的“两端”应用模式,保障能够通过信息化手段进行日常的执法办案工作,强化执法监督功能。提供了案件在线办理、当事人信用管理、文书电子送达、沿街店铺分析等功能&a…

VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构

VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构 请访问原文链接:VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org VM…

Apache HTTP server benchmarking tool(ab)-服务器基准测试工具一文上手

这是一个非常简单的工具,用途比较有限,只能针对单个URL进行尽可能快的压力测试。 ​ Windows下如何下载安装(Linux安装十分简单) Apache HTTP server benchmarking tool(ab)下载地址 ​ 资源 2.4版本 httpd-2.4.48-o111k-x64…

赋能AI未来,景联文科技推出高质量亿级教育题库、多轮对话以及心理大模型数据

当前,大模型正如雨后春笋般不断涌现,不断推动着大模型产业的应用实践进入加速发展的新阶段。 景联文科技是AI数据服务公司,提供海量优质大模型数据集,涵盖文本、图像、视频、音频等多类型数据,致力于为不同训练阶段的算…

maven:中央仓库验证方式改变:401 Content access is protected by token

前几天向maven中央仓库发布版本,执行上传命令mvn release:perform时报错了: [ERROR] Failed to execute goal org.sonatype.plugins:nexus-staging-maven-plugin:1.6.13:deploy (injected-nexus-deploy) on project xxxxx: Failed to deploy artifacts: …

基于Redis和openresty实现高并发缓存架构

目录 概述缓存架构设计实践代码路由业务封装redis 效果 概述 本文是对项目中 QPS 高并发相关问题的一种解决方案,利用 Nginx 与 Redis 的高并发、超低延迟响应,结合 Canal 进行实现。 openrestry官网 当程序需要提供较高的并发访问时,往往需…

【单片机】MSP430G2553单片机 Could not find MSP-FET430UIF on specified COM port 解决方案

文章目录 MSP430G2553开发板基础知识解决办法如何实施解决办法4步骤一步骤二步骤三 MSP430G2553开发板基础知识 MSP430G2553开发板如下图,上半部分就是UIF程序下载调试区域的硬件。个人觉得MSP430G2553开发板的这个部分没有做好硬件设计,导致很多系统兼…