海量数据处理利器 Roaring BitMap 原理介绍

作者:来自 vivo 互联网服务器团队- Zheng Rui

本文结合个人理解梳理了BitMap及Roaring BitMap的原理及使用,分别主要介绍了Roaring BitMap的存储方式及三种container类型及Java中Roaring BitMap相关API使用。

一、引言

在进行大数据开发时,我们可以使用布隆过滤器和Redis中的HyperLogLog来进行大数据的判重和数量统计,虽然这两种方法节省内存空间并且效率很高,但是也存在一些误差。如果需要100%准确的话,我们可以使用BitMap来存储数据。

BitMap 位图索引数据结构被广泛地应用于数据存储和数据搜索中,但是对于存储较为分散的数据时,BitMap会占用比较大的内存空间,因此我们更偏向于使用 Roaring BitMap稀疏位图索引进行存储。同时,Roaring BitMap广泛应用于数据库存储和大数据引擎中,例如Hive,Spark,Doris,Kylin等。

下文将分别介绍 BitMap 和 Roaring BitMap 的原理及其相关应用。

二、BitMap原理

BitMap的基本思想就是用bit位来标记某个元素对应的value,而key就是这个元素。

例如,在下图中,是一个字节代表的8位,下标为1,2,4,6的bit位的值为1,则该字节表示{1,2,4,6}这几个数。

图片

在Java中,1个int占用4个字节,如果用int来存储这四个数字的话,那么将需要4 * 4 = 16字节。

BitMap可以用于快速排序,查找,及去重等操作。优点是占用内存少(相较于数组)和运算效率高,但是缺点也非常明显,无法存储重复的数据,并且在存储较为稀疏的数据时,浪费存储空间较多。

三、Roaring BitMap 原理

3.1 存储方式

为了解决BitMap存储较为稀疏数据时,浪费存储空间较多的问题,我们引入了稀疏位图索引Roaring BitMap。Roaring BitMap 有较高的计算性能及压缩效率。下面简单介绍一下Roaring BitMap的基本原理。

Roaring BitMap处理int型整数,将32位的int型整数分为高16位和低16位分别进行处理,高16位作为索引分片,而低16位用于存储实际数据。其中每个索引对应一个数据桶(bucket),那么一共可以包含2^16 = 65536个数据块。每个数据桶使用container容器来存储低16位的部分,每个数据桶最多存储2^16 = 65536个数据。

图片

如上图所示,高16位作为索引查找具体的数据块,当前索引值为0,低16位作为value进行存储。

Roaring BitMap在进行数据存储时,会先根据高16位找到对应的索引key(二分查找),低16位作为key对应的value,先通过key检查对应的container容器,如果发现container不存在的话,就先创建一个key和对应的container,否则直接将低16位存储到对应的container中。

Roaring BitMap的精妙之处在于使用不同类型的container,接下来将对其进行介绍。

3.2 container类型

1.ArrayContainer

顾名思义,ArrayContainer直接采用数组来存储低16位数据,没有采用任何数据压缩算法,适合存储比较稀疏的数据,在Java中,使用short数组来存储,并且占用的内存空间大小和数据量成线性关系。由于short为2字节,因此n个数据为2n字节。ArrayContainer采用二分查找定位有序数组中的元素,因此时间复杂度为O(logN)。ArrayContainer的最大数据量为4096, 4096 * 2b = 8kb。

2.BitMapContainer

BitMapContainer采用BitMap的原理,就是一个没有经过压缩处理的普通BitMap,适合存储比较稠密的数据,在Java中使用Long数组存储低16位数据,每一个bit位表示一个数字。由于每个container需要存储2^16 = 65536个数据,如果通过BitMap进行存储的话,需要使用2^16个bit进行存储,即8kb的数据空间。

可以从下图中看出ArrayContainer和BitMapContainer的内存空间使用关系,当数据量小于4096时,使用ArrayContainer比较合适,当数据量大于等于4096时,使用BitMapContainer更佳。

图片

因为BitMap直接使用位运算,所以BitMapContainer的时间复杂度为O(1)。

3.RunContainer

RunContainer采用Run-Length Encoding 行程长度编码进行压缩,适合存储大量连续数据。Java中使用short数组进行存储。连续bit位程度越高的话越节省存储空间,最佳场景下(65536个数据全为1)只需要存储4字节。最差场景为所有数据都不连续,所有存储数据位置为奇数或者偶数,这种场景需要存储128kb。由于采用二分查找算法定位元素,因此时间复杂度为O(logN)。

行程长度编码即的原理是对连续出现的数字进行压缩,只记录初始数字和后续连续数量。

例如:[1,2,3,4,5,8,9,10]使用编码后的数据为[1,4,8,2]。

Java 里可以使用runOptinize()方法来对比RunContainer和其他两个Container存储空间大小,如果使用RunContainer存储空间更佳则会进行转化。

根据上面三个Container类型我们可以得知如何进行选择:

  1. Container默认使用ArrayContainer,当元素数量超过4096时,会由ArrayContainer转换BitMapContainer。

  2. 当元素数量小于等于4096时,BitMapContainer会逆向转换回ArrayContainer。

  3.  正常增删元素不会使Container直接变成RunContainer,而需要用户进行优化方法调用才会转换为最节省空间的Container。

3.3 Roaring BitMap 相关源码

介绍完Roaring BitMap的三种container类型以后,让我们了解一下,Roaring BitMap的相关源码。这里介绍一下Java中增加元素的源码实现。

public void add(final int x) {final short hb = Util.highbits(x);final int i = highLowContainer.getIndex(hb);if (i >= 0) {highLowContainer.setContainerAtIndex(i,highLowContainer.getContainerAtIndex(i).add(Util.lowbits(x)));} else {final ArrayContainer newac = new ArrayContainer();highLowContainer.insertNewKeyValueAt(-i - 1, hb, newac.add(Util.lowbits(x)));}}

Roaring BitMap首先获取添加元素的高16位,然后再调用getIndex获取高16位对应的索引,如果索引大于0,表示已经创建该索引对应的container,故直接添加相应的元素低16位即可;否则的话,说明该索引对应的container还没有被创建,先创建对应的ArrayContainer,再进行元素添加。值得一提的是,在getIndex方法中,使用了二分查找来获取索引值,所以时间复杂度为O(logn)。

// 包含一个二分查找
protected int getIndex(short x) {// 在二分查找之前,我们先对常见情况优化。if ((size == 0) || (keys[size - 1] == x)) {return size - 1;}// 没有碰到常见情况,我们只能遍历这个列表。return this.binarySearch(0, size, x);
}

对于元素添加,三种Container提供了不同的实现方式,下面将分别介绍。

1. ArrayContainer

if (cardinality == 0 || (cardinality > 0&& toIntUnsigned(x) > toIntUnsigned(content[cardinality - 1]))) {if (cardinality >= DEFAULT_MAX_SIZE) {return toBitMapContainer().add(x);}if (cardinality >= this.content.length) {increaseCapacity();}content[cardinality++] = x;} else {int loc = Util.unsignedBinarySearch(content, 0, cardinality, x);if (loc < 0) {// 当标签中元素数量等于默认最大值时,把ArrayContainer转换为BitMapContainerif (cardinality >= DEFAULT_MAX_SIZE) {return toBitMapContainer().add(x);}if (cardinality >= this.content.length) {increaseCapacity();}System.arraycopy(content, -loc - 1, content, -loc, cardinality + loc + 1);content[-loc - 1] = x;++cardinality;}}return this;
}

ArrayContainer把添加元素分成两种场景,一种走二分查找,另外一种不走二分查找。

第一种场景:不走二分查找。

当基数为0或者值大于container中的最大值,可以直接添加,因为content数组是有序的,最后一个是最大值。

当基数大于等于默认最大值4096时,ArrayContainer将转换为BitMapContainer。如果基数大于content的数组长度的话,需要将content进行扩容。最后进行赋值即可。

第二种场景:走二分查找。

先通过二分查找找到对应的插入位置,如果返回loc大于等于0,说明存在,直接返回即可,如果小于0才进行后续插入。后续操作同上,当基数大于等于默认最大值4096时,ArrayContainer将转换为BitMapContainer。如果基数大于content的数组长度的话,需要将content进行扩容。最后通过拷贝数组将元素插入到content数组中。

2. BitMapContainer

public Container add(final short i) {final int x = Util.toIntUnsigned(i);final long previous = BitMap[x / 64];long newval = previous | (1L << x);   BitMap[x / 64] = newval;if (USE_BRANCHLESS) {cardinality += (previous ^ newval) >>> x;} else if (previous != newval) {++cardinality;}return this;
}

BitMap数组为BitMapContainer的存储容器存放数据的内容,数据类型为long,在这里我们只需要找到x在BitMap中的位置,并且把相应的bit位置1即可。x/64就是找到对应long的旧值,1L<<x 就是把对应的bit位置为1,再跟旧值进行或操作,就可以得到新值,再将这个新值存回到bitmap数组即可。<="" span="">

3. RunContainer

public Container add(short k) {int index = unsignedInterleavedBinarySearch(valueslength, 0, nbrruns, k);if (index >= 0) {return this;// already there}index = -index - 2;if (index >= 0) {int offset = toIntUnsigned(k) - toIntUnsigned(getValue(index));int le = toIntUnsigned(getLength(index));if (offset <= le) {return this;}if (offset == le + 1) {// we may need to fuseif (index + 1 < nbrruns) {if (toIntUnsigned(getValue(index + 1)) == toIntUnsigned(k) + 1) {// indeed fusion is neededsetLength(index,(short) (getValue(index + 1) + getLength(index + 1) - getValue(index)));recoverRoomAtIndex(index + 1);return this;}}incrementLength(index);return this;}if (index + 1 < nbrruns) {// we may need to fuseif (toIntUnsigned(getValue(index + 1)) == toIntUnsigned(k) + 1) {// indeed fusion is neededsetValue(index + 1, k);setLength(index + 1, (short) (getLength(index + 1) + 1));return this;}}}if (index == -1) {// we may need to extend the first runif (0 < nbrruns) {if (getValue(0) == k + 1) {incrementLength(0);decrementValue(0);return this;}}}makeRoomAtIndex(index + 1);setValue(index + 1, k);setLength(index + 1, (short) 0);return this;
}

RunContainer中的两个数据结构,nbrruns表示有多少段行程,数据类型为int,valueslength数组表示所有的行程,数据类型为short。

  1. 首先,使用二分查找+顺序查找在valueslength数组中查找元素k的插入位置index。如果查找到的index结果大于等于0那就说明k是某个行程起始值,已经存在,直接返回。

  2. -index-2是为了指向前一个行程起始值的索引。

  3. 接下来是一些偏移量和索引值的判断,主要是为了确认k是否落在上一个行程里,或者外面,如果落在上一个行程里,则直接返回,否则需要新建一个行程或者就近与一个行程混合并且将行程长度加1。

3.4 BitMap 和 Roaring BitMap 存储情况对比

public static void count(Integer inputSize) {         RoaringBitMap BitMap = new RoaringBitMap();         BitMap.add(0L, inputSize);//获取BitMap个数int cardinality = BitMap.getCardinality();//获取BitMap压缩大小int compressSizeIntBytes = BitMap.getSizeInBytes();//删除压缩(移除行程编码,将container退化为BitMapContainer 或 ArrayContainer)         BitMap.removeRunCompression();//获取BitMap不压缩大小int uncompressSizeIntBytes = BitMap.getSizeInBytes();System.out.println("Roaring BitMap个数:" + cardinality);System.out.println("最好情况,BitMap压缩大小:" + compressSizeIntBytes / 1024 + "KB");System.out.println("最坏情况,BitMap不压缩大小:" + uncompressSizeIntBytes / 1024 / 1024 + "MB");BitSet bitSet = new BitSet();for (int i = 0; i < inputSize; i++) {bitSet.set(i);}//获取BitMap大小int size = bitSet.size();System.out.println("BitMap个数:" + bitSet.length());System.out.println("BitMap大小:" + size / 8 / 1024 / 1024 + "MB");}

上述代码使用了Java内置的BitMap(BitSet) 和 Roaring BitMap进行存储大小对比,输出结果如下所示。

  • Roaring BitMap个数:1000000000

  • 最好情况,BitMap压缩大小:149KB

  • 最坏情况,BitMap不压缩大小:119MB

  • Roaring BitMap个数:1000000000

  • BitMap大小:128MB

可以发现,Roaring BitMap的压缩性能效果非常好,同等情况下,是BitMap占用内存的近一千分之一。在退化成BitMapContainer/arrayContainer之后也仍然比使用基本的BitMap存储效果好一些。

四、Roaring BitMap 使用

4.1 Java 中相关 API 使用

在Java中,Roaring BitMap提供了交并补差集等操作,如下代码所示,列举了Java中roaing BitMap的相关API使用方式。

//添加单个数字
public void add(final int x)//添加范围数字
public void add(final long rangeStart, final long rangeEnd)//移除数字
public void remove(final int x)//遍历RBM
public void forEach(IntConsumer ic)//检测是否包含
public boolean contains(final int x)//获取基数
public int getCardinality()//位与,取两个RBM的交集,当前RBM会被修改
public void and(final RoaringBitMap x2)//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap and(final RoaringBitMap x1, final RoaringBitMap x2)//位或,取两个RBM的并集,当前RBM会被修改
public void or(final RoaringBitMap x2)//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap or(final RoaringBitMap x1, final RoaringBitMap x2)//异或,取两个RBM的对称差,当前RBM会被修改
public void xor(final RoaringBitMap x2)//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap xor(final RoaringBitMap x1, final RoaringBitMap x2)//取原始值和x2的差集,当前RBM会被修改
public void andNot(final RoaringBitMap x2)//同上,但是会返回一个新的RBM,不会修改原始的RBM,线程安全
public static RoaringBitMap andNot(final RoaringBitMap x1, final RoaringBitMap x2)//序列化
public void serialize(DataOutput out) throws IOException
public void serialize(ByteBuffer buffer)//反序列化
public void deserialize(DataInput in) throws IOException
public void deserialize(ByteBuffer bbf) throws IOException

对于序列化来说,Roaring BitMap官方定义了一套序列化规则,用来保证不同语言实现的兼容性。

图片

Java中可以使用serialize方法进行序列化,deserialize方法进行反序列化。

4.2 业务实际场景应用

Roaring BitMap可以用来构建大数据标签,针对类型特征来创建对应的标签。

在我们的业务场景中,有很多需要基于人群标签进行交并补集运算的场景,下面以一个场景为例,我们需要计算每天某个设备接口 在设备标签A上的查询成功率,因为设备标签A中的设备不是所有都活跃在网的,所以我们需要将设备标签A与每日日活人群标签取交集,得到的交集大小才能用作成功率计算的分母,另外拿查询成功的标签人群做分子来进行计算即可,查询时长耗时为1s。

假如没有使用标签保存集合之前,我们需要在hive表中查询出同时满足当天在网的活跃用户和设备A的用户数量,查询时长耗时在几分钟以上。两种方式相比之下,使用Roaring BitMap查询的效率更高。

图片

五、总结

本文结合个人理解梳理了BitMap及Roaring BitMap的原理及使用,分别主要介绍了Roaring BitMap的存储方式及三种container类型及Java中Roaring BitMap相关API使用,如有不足和优化建议,也欢迎大家批评指正。

参考资料:

  • Chambi S , Lemire D , Kaser O , et al.

    Better BitMap performance with Roaring 

    BitMaps[J]. Software—practice & Experience, 2016, 46(5):709-719.

  • https://RoaringBitMap.org/

  • GitHub - RoaringBitmap/RoaringFormatSpec: Specification of the compressed-bitmap Roaring format

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/30656.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

公域+私域运营思路框架

本次分享公域私域运营思路框架&#xff0c;内容包括私域原则、公域引流、让利思维、价值体系等内容&#xff0c;让你的流量保持高留存、高活跃。

idea 创建properties文件,解决乱码

设置properties文件编码 点击file->Settings File Encodings->设置utf-8 重新创建.properties文件才生效

【Java学习笔记】异常处理

生活中我们在使用一些产品的时候&#xff0c;经常会碰到一些异常情况。例如&#xff0c;使用ATM机取钱的时&#xff0c;机器会突然出现故障导致无法完成正常的取钱业务&#xff0c;甚至吞卡&#xff1b;在乘坐地铁时&#xff0c;地铁出现异常无法按时启动和运行&#xff1b;使用…

本科且非专业学历|艺术自由职业者成功赴美国威斯康星大学麦迪逊分校自费访学

R老师只有本科学历且不是艺术专业&#xff0c;但有独创的艺术作品&#xff0c;其希望在一年的访问学者期间&#xff0c;拓宽艺术视野&#xff0c;同时学习艺术理论&#xff0c;以弥补学术背景薄弱的短板。最终我们为其落实了美国威斯康星大学麦迪逊分校访问学者职位。 R老师背景…

IAR stack usage

c - IAR Stack Usage for STM32 in the map File - Stack Overflow

SAP FICO 下载文件报错【调用数据提供商错误】

报错如下图所示&#xff1a; 解决办法&#xff1a; 当弹出保存文件的提示时&#xff0c;不要点击“记住我的决定”

【MATLAB】语法

MATLAB 基本语法(%{和%}) 赋值 函数名值&#xff1b;for for i1:10循环语句 end//while x0; sum0; while x<100sumsumx;x; end//if if x > 1f x^2 1; elsef 2 * x endswitch onum input(请输入一个数); switch num case -1 //注意case后面没有冒号disp(I am…

昇思25天学习打卡营第1天|基本介绍及快速入门

1.第一天学习总体复盘 1&#xff09;成功注册昇思大模型平台&#xff0c;并成功申请算力&#xff1b; 2)在jupyter环境下学习初学入门/初学教程的内容&#xff1b; 在基本介绍部分&#xff0c;快速撸了一边内容&#xff0c;有了一个基本的了解&#xff08;没理解到位的计划采用…

【尝鲜】SpringCloudAlibaba AI 配置使用教程

1、环境配置 maven依赖pom.xml 注意配置远程仓库&#xff0c;原因见&#xff1a;Unresolved dependency: ‘org.springframework.ai:spring-ai-core:jar:0.8.1’ <dependencies><!--Base--><dependency><groupId>org.springframework.boot</group…

用qq邮箱发送邮件验证码java

添加依赖 <dependency><groupId>com.sun.mail</groupId><artifactId>javax.mail</artifactId><version>1.6.2</version> </dependency>配置邮箱 实现代码 package com.example.demo.service; import org.springframework.st…

芜湖!恒驰大数据迁移案例荣幸亮相“东数西算”芜湖集群创新大会暨华为云华东(芜湖)数据中心全球开服活动

6月13日至14日&#xff0c;“东数西算”芜湖集群创新大会暨华为云华东&#xff08;芜湖&#xff09;数据中心全球开服活动在安徽芜湖隆重举办&#xff0c;标志着“东数西算”芜湖集群正式上线、华为云全国存算网的枢纽节点布局全面完成。 本次活动由华为技术有限公司主办、芜湖…

金属配件加工厂设备远程监控

随着科技的飞速发展&#xff0c;智能制造已成为制造业转型升级的重要方向。在金属配件加工领域&#xff0c;设备的稳定运行和高效管理对于提升产品质量、降低生产成本至关重要。HiWoo Cloud平台凭借其强大的远程监控功能&#xff0c;为金属配件加工厂提供了全新的解决方案&…

Android SurfaceFlinger——服务启动流程(二)

SurfaceFlinger 是 Android 系统中的一个核心服务&#xff0c;负责管理图形缓冲区的合成和屏幕显示&#xff0c;是 Android 图形系统的关键组件。 一、启动流程 SurfaceFlinger 作为一个系统服务&#xff0c;在 Android 启动早期由 init 进程通过 servicemanager 启动。它是作…

【黑马TS】学习资料Day4

五、在 React 中使用 TypeScript 现在&#xff0c;我们已经掌握了 TS 中基础类型、高级类型的使用了。但是&#xff0c;如果要在前端项目开发中使用 TS&#xff0c;还需要掌握 React、Vue、Angular 等这些库或框架中提供的 API 的类型&#xff0c;以及在 TS 中是如何使用的。 …

作为一名程序员,最大的成就感来自哪里?

说在前面 &#x1f388;作为一名程序员&#xff0c;我们的生活充满了挑战与创造。在成千上万行代码的背后&#xff0c;我们的成就感来源于何处&#xff1f;是解决问题的瞬间&#xff0c;是产品发布的一刻&#xff0c;还是用户的一声赞叹&#xff1f; 解决问题的瞬间 每当我们调…

AI写作平台:提升文档撰写效率的神器

工欲善其事&#xff0c;必先利其器。 随着AI技术与各个行业或细分场景的深度融合&#xff0c;日常工作可使用的AI工具呈现出井喷式发展的趋势&#xff0c;AI工具的类别也从最初的AI文本生成、AI绘画工具&#xff0c;逐渐扩展到AI思维导图工具、AI流程图工具、AI生成PPT工具、AI…

驱动层透明加密技术是什么?

驱动层透明加密技术的应用场景主要集中在确保数据在存储、传输和使用过程中的安全性&#xff0c;特别是在需要严格控制文件访问和防止数据泄露的场合。以下是几个具体的应用场景&#xff0c;结合参考文章中的相关信息进行归纳&#xff1a; www.weaem.com 内部文件流通&#xf…

【索引】数据库索引之顺序索引概述

目录 1、索引的基本概念 2、顺序索引 3、稠密索引和稀疏索引 3.1 什么是稠密索引&#xff1f; 3.2 什么是稀疏索引&#xff1f; 4、索引的更新 4.1 索引的插入操作 4.1 索引的删除操作 5、辅助索引 1、索引的基本概念 数据库中的索引与图书馆中书的索引作用相同&#xf…

Spire.PDF for .NET【文档操作】演示:如何删除 PDF 中的图层

借助Spire.PDF&#xff0c;我们可以在新建或现有pdf文档的任意页面中添加线条、图像、字符串、椭圆、矩形、饼图等多种图层。同时&#xff0c;它还支持我们从pdf文档中删除特定图层。 Spire.PDF for .NET 是一款独立 PDF 控件&#xff0c;用于 .NET 程序中创建、编辑和操作 PD…

【Python/Pytorch 】-- 滑动窗口算法

文章目录 文章目录 00 写在前面01 基于Python版本的滑动窗口代码02 算法效果 00 写在前面 写这个算法原因是&#xff1a;训练了一个时序网络&#xff0c;该网络模型的时序维度为32&#xff0c;而测试数据的时序维度为90。因此需要采用滑动窗口的方法&#xff0c;生成一系列32…