机器学习实验--- 金融数据基础与计算在线实验闯关

第1关:申万家用电器行业股票代码获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
#1.读取“申万行业分类.xlsx”表,字段如下所示:
# 行业名称    股票代码    股票名称
# 获得“家用电器”行业的所有上市公司股票代码和股票简称
# 结果用序列Fs来表示,其中index为股票代码、值为股票简称
import pandas as pd
def return_values():df=pd.read_excel("申万行业分类.xlsx")Fs=df[df["行业名称"]=="家用电器"][["股票代码","股票名称"]]Fs=Fs.set_index("股票代码")["股票名称"]return Fs

第2关:申万家用电器行业股票财务指标数据获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
基于上一关的结果,读取“上市公司财务与指标数据2013-2017.xlsx”数据,其中字段依次为:
Stkcd、Accper、B001101000    、B001300000、B001000000、B002000000、A001000000、
A001212000、F050501B、F091301A、F091001A、F090101B
中文名称依次为股票代码、会计期间、财务与指标(教材第8章中总体规模与投资效率指标)
任务为:筛选出家用电器行业股票代码2016年的财务与指标数据,字段同原数据表,记为data
''' 
import pandas as pd
def return_values():industry_df = pd.read_excel('申万行业分类.xlsx')Fs = industry_df[industry_df['行业名称'] == '家用电器'].set_index('股票代码')['股票名称'].to_dict()financial_df = pd.read_excel('上市公司财务与指标数据2013-2017.xlsx')data = financial_df[(financial_df['Stkcd'].isin(Fs.keys())) & (financial_df['Accper'].str.startswith('2016'))]return data

第3关:申万家用电器行业股票财务指标数据处理

任务描述

本关任务:根据右边测试平台的提示,补充代码


# -*- coding: utf-8 -*-
'''
在上一关基础上,对筛选出的家用电器行业股票代码2016年的财务与指标数据,
去掉空缺值、作均值-方差标准化处理,返回结果x(数组)和股票代码code(列表)
'''
import pandas as pd
from sklearn.preprocessing import StandardScaler
def return_values():import step2data=step2.return_values()data = data.dropna()code = data['Stkcd'].tolist()financial_metrics = data.drop(['Stkcd', 'Accper'], axis=1)scaler = StandardScaler()x = scaler.fit_transform(financial_metrics)      #x=pd.DataFrame(x)return (x,code)

第4关:申万家用电器行业股票财务指标数据主成分分析

任务描述

本关任务:根据右边测试平台的提示,补充代码。

# -*- coding: utf-8 -*-
'''
在上一关基础上,对去掉缺失值和标准化后的指标数据,进行主成分分析,
并提取主成分Y,要求累计贡献率在95%
'''
import numpy as np  
from sklearn.decomposition import PCA
def return_values():import step3r=step3.return_values()x, code = r  # 解包返回的结果  ####begin####  # 初始化PCA对象,并设置目标累计贡献率为0.95  pca = PCA(n_components=0.95)  # 对数据进行PCA降维  Y = pca.fit_transform(x)  return Y

第5关:申万家用电器行业股票日交易数据获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
"""
在第一关的基础上,读取"股票交易数据_2017.xlsx"表,字段如下:
Stkcd、Trddt、Clsprc、Dnshrtrd、Dnvaltrd、Opnprc、Hiprc、Loprc,
中文名称依次为:股票代码、交易日期、收盘价、成交量、成交额、开盘价、最高价、最低价。
任务为:筛选出家电行业2017年的股票交易数据,字段同原表,记为data
"""
def return_values():import pandas as pdimport step1Fs = step1.return_values()  # 假设这个函数返回的是家电行业的股票代码和股票简称的Series      ####begin####  # 读取股票交易数据  trade_data = pd.read_excel("股票交易数据_2017.xlsx")      # 提取家电行业的股票代码列表  home_appliance_codes = Fs.index.tolist()    # 筛选家电行业的股票交易数据  data = trade_data[trade_data['Stkcd'].isin(home_appliance_codes)]      # 筛选2017年的交易数据(假设Trddt字段是日期格式)  data = data[pd.to_datetime(data['Trddt']).dt.year == 2017]  ####end####  return data

第6关:申万家用电器行业股票交易指数的构造

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
在上一关基础上,构造家用电器行业交易指数,其中指数计算公式为:
当日指数=当日总交易额/基准日总交易额*100
其中当日总交易额=当日所有股票交易额之和,基准日为2017年首个交易日,
返回index_val
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()# 将交易日期(Trddt)转换为datetime类型  data['Trddt'] = pd.to_datetime(data['Trddt'])        # 排序数据,确保日期顺序正确  data.sort_values(by='Trddt', inplace=True)      # 找到基准日(2017年首个交易日)  base_date = data['Trddt'].min().date()    # 计算基准日的总交易额  base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      # 初始化交易指数Series  index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    # 计算每一天的交易指数  for date in index_val.index:  # 选择当天的交易数据  daily_data = data[data['Trddt'].dt.date == date]  # 计算当天总交易额  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  # 计算交易指数  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100  # 将index_val按日期排序(尽管之前已经排过序,但这里是为了确保)  index_val.sort_index(inplace=True)return index_val

第7关:计算沪深300指数2014-2017年的年涨跌幅指标

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
分别计算2014-2017年的年度涨跌幅,
其中年度涨跌幅=(年末收盘指数-年初收盘指数)/年初收盘指数
依次返回年度涨跌幅(r1,r2,r3,r4)
'''import pandas as pd
def return_values():# 读取Excel文件  df = pd.read_excel('沪深300指数交易数据表.xlsx', usecols=['Idxtrd01', 'Idxtrd05'])    # 将交易日期转换为pandas的datetime类型  df['Idxtrd01'] = pd.to_datetime(df['Idxtrd01'])    # 提取年份  df['year'] = df['Idxtrd01'].dt.year  # 分组并计算每年第一个和最后一个交易日的收盘指数  first_last_days = df.groupby('year').agg({'Idxtrd05': ['first', 'last']})  first_last_days.columns = ['_'.join(col).strip() for col in first_last_days.columns.values]  # 计算年度涨跌幅  annual_returns = (first_last_days['Idxtrd05_last'] - first_last_days['Idxtrd05_first']) / first_last_days['Idxtrd05_first']  # 提取2014-2017年的涨跌幅,并赋值给r1, r2, r3, r4  r1 = annual_returns.loc[2014]  r2 = annual_returns.loc[2015]  r3 = annual_returns.loc[2016]  r4 = annual_returns.loc[2017]return (r1,r2,r3,r4)

第8关:计算获得沪深300指数2016年收盘指数的关键转折点

任务描述

本关任务:根据右边测试平台的提示,补充代码.


# -*- coding: utf-8 -*-
'''
序列x1,x2,x3,如果|x2-(x1+x2)/2|越大,x2成为关键转折点的可能性就越大。
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年指数的关键转折点20个,包括年初和年末的两个点。
并返回结果,用一个序列keydata来表示,其中index为序号,值为收盘指数。
注意:序号按年度实际交易日期从0开始编号
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()  data['Trddt'] = pd.to_datetime(data['Trddt'])        data.sort_values(by='Trddt', inplace=True)       base_date = data['Trddt'].min().date()     base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    for date in index_val.index:   daily_data = data[data['Trddt'].dt.date == date]  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100   index_val.sort_index(inplace=True)print(1)exit(0)  

第9关:计算沪深300指数2016年10、20、30、60日收盘指数移动平均值

任务描述

本关任务:根据右边测试平台的提示,补充代码。

# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年收盘指数的10、20、30、60日移动平均收盘指数,
返回结果为(x10,x20,x30,x60),其中xi为序列,index按年度实际交易天数从0开始编号
'''
import pandas as pd
def return_values():df = pd.read_excel('沪深300指数交易数据表.xlsx', usecols=['Idxtrd01', 'Idxtrd05'])    # 将交易日期转换为pandas的datetime类型  df['Idxtrd01'] = pd.to_datetime(df['Idxtrd01'])    # 提取年份  df['year'] = df['Idxtrd01'].dt.year  # 分组并计算每年第一个和最后一个交易日的收盘指数  first_last_days = df.groupby('year').agg({'Idxtrd05': ['first', 'last']})  first_last_days.columns = ['_'.join(col).strip() for col in first_last_days.columns.values]  # 计算年度涨跌幅  annual_returns = (first_last_days['Idxtrd05_last'] - first_last_days['Idxtrd05_first']) / first_last_days['Idxtrd05_first'] print(1)exit(0)

第10关:计算沪深300指数2016年现价指标

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年收盘指数的现价指标,其公式为:
现价=当日收盘指数 / 过去 10 个交易日的移动平均收盘指数
返回结果为p10,为序列,index按年度实际交易天数从0开始编号
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()# 将交易日期(Trddt)转换为datetime类型  data['Trddt'] = pd.to_datetime(data['Trddt'])        # 排序数据,确保日期顺序正确  data.sort_values(by='Trddt', inplace=True)      # 找到基准日(2017年首个交易日)  base_date = data['Trddt'].min().date()    # 计算基准日的总交易额  base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      # 初始化交易指数Series  index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    # 计算每一天的交易指数  for date in index_val.index:  # 选择当天的交易数据  daily_data = data[data['Trddt'].dt.date == date]  # 计算当天总交易额  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  # 计算交易指数  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100  # 将index_val按日期排序(尽管之前已经排过序,但这里是为了确保)  index_val.sort_index(inplace=True)   print(1)exit(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/30607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目中选择Entity Framework Core还是Dapper?

我是将 Dapper 还是 Entity framework core 用于下一个 .NET 项目?当你必须做出这个决定时,总是令人困惑,为了项目的成功,你需要做出正确的决定。让我来帮你... 介绍 使用 .NET 开发的应用程序可以根据其使用的对象关系映射器 &…

「前端+鸿蒙」鸿蒙应用开发-在线教育测验案例

在鸿蒙应用开发中,状态管理是确保应用能够响应用户交互并保持数据一致性的关键。以下是一个状态管理的真实案例,包括功能简介、布局和样式、状态定义、业务逻辑、UI交互等。 案例 - 在线教育测验应用 功能简介 用户可以进行选择题测验。应用提供自动评分和统计信息。用户可以…

Java | Leetcode Java题解之第168题Excel表列名称

题目: 题解: class Solution {public String convertToTitle(int columnNumber) {StringBuffer sb new StringBuffer();while (columnNumber ! 0) {columnNumber--;sb.append((char)(columnNumber % 26 A));columnNumber / 26;}return sb.reverse().t…

【APP移动端性能测试】第一节.APP应用架构、环境和敏捷开发模型介绍

文章目录 前言一、APP应用架构二、APP项目环境 2.1 后端项目环境 2.2 前端项目环境三、Scrum敏捷开发模型 3.1 Scrum敏捷模型基础介绍 3.2 Scrum敏捷开发开发流程总结 前言 一、APP应用架构 (1)APP应用架构 (2&#xff0…

springboot应用cpu飙升的原因排除

1、通过top或者jps命令查到是那个java进程, top可以看全局那个进程耗cpu,而jps则默认是java最耗cpu的,比如找到进程是196 1.1 top (推荐)或者jps命令均可 2、根据第一步获取的进程号,查询进程里那个线程最占用cpu,发…

js 用正则表达式 匹配自定义字符之间的字符串数据,如:( )、[ ]、{ }、< >、【】等括号之间的字符串数据

要使用正则表达式匹配尖括号()之间的数据,可以使用以下代码示例: 在JavaScript中,你可以使用正则表达式来匹配括号()之间的数据。以下是一个简单的例子,它展示了如何使用正则表达式来获取两对括号之间的文本。 // 示例字符串 con…

LENOVO联想 小新 16 IAH8 2023款(83BG)笔记本原厂Windows11系统,恢复出厂开箱状态预装OEM系统镜像安装包下载

适用型号:小新 16 IAH8【83BG】 链接:https://pan.baidu.com/s/18VbGbBXtQEW5P8wLIyJtAQ?pwddv1s 提取码:dv1s 联想原装Win11系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、系统属性专属LOGO标志、Office办公软件、联想电脑管家…

董宇辉的人生关键词:年轻人的成长指南

在当今这个信息爆炸、竞争激烈的社会中,年轻人面临着前所未有的挑战与机遇。如何从纷繁复杂的世界中找到属于自己的道路?近日,知名人生导师董宇辉为年轻人提出了几个人生关键词,这些词汇不仅凝聚了他多年的人生感悟,更…

服务器负载均衡

什么是服务器负载 1. 常见理解的平均负载 每次发现系统变慢时,我们通常做的第一件事,就是执行 top 或者 uptime 命令,来了解系统的负载情况。比如下列情况 [rootkube-node1 ~]# uptime09:44:37 up 74 days, 11:53, 1 user, load average:…

【STM32-ST-Link】

STM32-ST-Link ■ ST-Link简介■ ST-Link驱动的安装。■ ST-Link编程软件(MDK)配置。■ ST-Link固件升级方法 ■ ST-Link简介 由于德产 J-LINK 价格非常昂贵, 而国产 J-LINK 因为版权问题将在万能的淘宝销声匿迹。 所以我们有必要给大家介绍 JTAG/SWD 调试工具中另…

架构设计 - Nginx Lua 缓存配置

摘要: web 应用业务缓存通常3级: 一级缓存:JVM 本地缓存 二级缓存:Redis集中式缓存 三级缓存:Nginx Proxy Cache 缓存 或 Nginx Lua 缓存 四级缓存:静态资源CDN缓存 本文主要分享 Nginx Lua 缓存配置开发 鉴于 Nginx Proxy Cache 缓存的劣势,在生产项目中很少使用…

如何做好技术管理与技术规划?

一、背景 做好技术管理不仅要求紧跟行业前沿动态,同时也需把握好产品开发的阶段性分期,确保技术成果转化和产品落地的顺畅进行。技术管理的成功与否,在很大程度上取决于能否精准捕捉市场需求,据此调整任务优先级。面对瞬息万变的…

Day10—Spark SQL基础

Spark SQL介绍 ​ Spark SQL是一个用于结构化数据处理的Spark组件。所谓结构化数据,是指具有Schema信息的数据,例如JSON、Parquet、Avro、CSV格式的数据。与基础的Spark RDD API不同,Spark SQL提供了对结构化数据的查询和计算接口。 Spark …

IDEA上MySQL的jar包导入教程

jar包下载网址——》https://mvnrepository.com/ 1.进入界面,点击搜索框,搜索mysql: 外国网站,可能有点慢,耐心等待即可。 2.点击查询结果: 进入界面,点击前两个结果的其中一个,两个都可以 …

计算机毕业设计Python+Vue.js+Flask+Scrapy电影大数据分析 电影推荐系统 电影爬虫可视化 电影数据分析 大数据毕业设计 协同过滤算法

开发技术 协同过滤算法、机器学习、vue.js、echarts、Flask、Python、MySQL 创新点 协同过滤推荐算法、爬虫、数据可视化 补充说明 两种Python协同过滤推荐算法集成 (ItemCF推荐算法 和 UserCF 推荐算法) 2.专业美工整体设计的细腻的酷黑主题,前后端分离一体化系统&…

leetCode-hot100-链表专题

leetCode-hot100-链表专题 链表简介单链表单链表的使用例题206.反转链表19.删除链表的倒数第N个结点24.两两交换链表中的节点25.K个一组翻转链表 双向链表双向链表的使用 循环链表61.旋转链表141.环形链表142.环形链表Ⅱ LinkedListLinkedList的使用 链表简介 参考博客&#x…

掉电安全文件系统分析

掉电安全FS 掉电安全的文件系统(Power-Fail Safe File Systems)被设计为在电源故障或系统崩溃的情况下仍能保持数据一致性的文件系统。这样的文件系统通常通过使用日志(journaling)或写时复制(copy-on-write&#xff…

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《协同考虑空气质量与热舒适度的空调系统双层优化控制策略》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

升级 Kubernetes Ingress NGINX Controller: 自助编译 NGINX 的实践

保持软件的更新对于系统的安全性和稳定性至关重要。本文将介绍如何从源代码自助编译 NGINX,并将其集成到 Kubernetes Ingress NGINX Controller 镜像中,以实现 NGINX 的升级。此方法不仅可以提高系统的安全性,还可以定制 NGINX 的功能&#x…

ipvsadm命令总结

ipvsadm命令总结 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 什么是ipvsadm命令? ipvsadm是Linux系统下的一个命令行工具,用于配置…