Codeforces Round 953 (Div. 2 ABCDEF题) 视频讲解

A. Alice and Books

Problem Statement

Alice has n n n books. The 1 1 1-st book contains a 1 a_1 a1 pages, the 2 2 2-nd book contains a 2 a_2 a2 pages, … \ldots , the n n n-th book contains a n a_n an pages. Alice does the following:

  • She divides all the books into two non-empty piles. Thus, each book ends up in exactly one of the two piles.
  • Alice reads one book with the highest number in each pile.

Alice loves reading very much. Help her find the maximum total number of pages she can read by dividing the books into two piles.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 500 1 \le t \le 500 1t500) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 100 2 \le n \le 100 2n100) — the number of books Alice has.

The second line of each test case contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109) — the number of pages in each book.

Output

For each test case, output a single integer — the maximum number of pages Alice can read.

Example

Example

input
5
2
1 1
4
2 3 3 1
5
2 2 3 2 2
2
10 3
3
1 2 3
output
2
4
5
13
5

Note

In the first test case, Alice can put book number 1 1 1 in the first pile, and book number 2 2 2 in the second pile. Then she will read a 1 + a 2 = 1 + 1 = 2 a_1 + a_2 = 1 + 1 = 2 a1+a2=1+1=2 pages.

In the second test case, Alice can put books with numbers 2 2 2 and 3 3 3 in the first pile, and books with numbers 1 1 1 and 4 4 4 in the second pile. Then she will read the book with the highest number 3 3 3 from the first pile, and the book with the highest number 4 4 4 from the second pile. Then she will read a 3 + a 4 = 3 + 1 = 4 a_3 + a_4 = 3 + 1 = 4 a3+a4=3+1=4 pages.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 1e2 + 10;int n;
int a[N];void solve() {cin >> n;int mx = 0;for (int i = 1; i <= n; i ++)cin >> a[i];for (int i = 1; i < n; i ++)mx = max(mx, a[i]);cout << mx + a[n] << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

B. New Bakery

Problem Statement

Bob decided to open a bakery. On the opening day, he baked n n n buns that he can sell. The usual price of a bun is a a a coins, but to attract customers, Bob organized the following promotion:

  • Bob chooses some integer k k k ( 0 ≤ k ≤ min ⁡ ( n , b ) 0 \le k \le \min(n, b) 0kmin(n,b)).
  • Bob sells the first k k k buns at a modified price. In this case, the price of the i i i-th ( 1 ≤ i ≤ k 1 \le i \le k 1ik) sold bun is ( b − i + 1 ) (b - i + 1) (bi+1) coins.
  • The remaining ( n − k ) (n - k) (nk) buns are sold at a a a coins each.

Note that k k k can be equal to 0 0 0. In this case, Bob will sell all the buns at a a a coins each.

Help Bob determine the maximum profit he can obtain by selling all n n n buns.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases. The description of the test cases follows.

The only line of each test case contains three integers n n n, a a a, and b b b ( 1 ≤ n , a , b ≤ 1 0 9 1 \le n, a, b \le 10^9 1n,a,b109) — the number of buns, the usual price of a bun, and the price of the first bun to be sold at a modified price.

Output

For each test case, output a single integer — the maximum profit that Bob can obtain.

Example

Example

input
7
4 4 5
5 5 9
10 10 5
5 5 11
1000000000 1000000000 1000000000
1000000000 1000000000 1
1000 1 1000
output
17
35
100
45
1000000000000000000
1000000000000000000
500500

Note

In the first test case, it is optimal for Bob to choose k = 1 k = 1 k=1. Then he will sell one bun for 5 5 5 coins, and three buns at the usual price for 4 4 4 coins each. Then the profit will be 5 + 4 + 4 + 4 = 17 5 + 4 + 4 + 4 = 17 5+4+4+4=17 coins.

In the second test case, it is optimal for Bob to choose k = 5 k = 5 k=5. Then he will sell all the buns at the modified price and obtain a profit of 9 + 8 + 7 + 6 + 5 = 35 9 + 8 + 7 + 6 + 5 = 35 9+8+7+6+5=35 coins.

In the third test case, it is optimal for Bob to choose k = 0 k = 0 k=0. Then he will sell all the buns at the usual price and obtain a profit of 10 ⋅ 10 = 100 10 \cdot 10 = 100 1010=100 coins.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n, a, b;cin >> n >> a >> b;int k1 = max(min(b - a, n), 0ll), k2 = max(min(b - a + 1, n), 0ll);cout << max((2 * b - k1 + 1) * k1 / 2 + (n - k1) * a, (2 * b - k2 + 1) * k2 / 2 + (n - k2) * a) << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

C. Manhattan Permutations

Problem Statement

Let’s call the Manhattan value of a permutation † ^{\dagger} p p p the value of the expression ∣ p 1 − 1 ∣ + ∣ p 2 − 2 ∣ + … + ∣ p n − n ∣ |p_1 - 1| + |p_2 - 2| + \ldots + |p_n - n| p11∣+p22∣++pnn.

For example, for the permutation [ 1 , 2 , 3 ] [1, 2, 3] [1,2,3], the Manhattan value is ∣ 1 − 1 ∣ + ∣ 2 − 2 ∣ + ∣ 3 − 3 ∣ = 0 |1 - 1| + |2 - 2| + |3 - 3| = 0 ∣11∣+∣22∣+∣33∣=0, and for the permutation [ 3 , 1 , 2 ] [3, 1, 2] [3,1,2], the Manhattan value is ∣ 3 − 1 ∣ + ∣ 1 − 2 ∣ + ∣ 2 − 3 ∣ = 2 + 1 + 1 = 4 |3 - 1| + |1 - 2| + |2 - 3| = 2 + 1 + 1 = 4 ∣31∣+∣12∣+∣23∣=2+1+1=4.

You are given integers n n n and k k k. Find a permutation p p p of length n n n such that its Manhattan value is equal to k k k, or determine that no such permutation exists.

† ^{\dagger} A permutation of length n n n is an array consisting of n n n distinct integers from 1 1 1 to n n n in arbitrary order. For example, [ 2 , 3 , 1 , 5 , 4 ] [2,3,1,5,4] [2,3,1,5,4] is a permutation, but [ 1 , 2 , 2 ] [1,2,2] [1,2,2] is not a permutation ( 2 2 2 appears twice in the array), and [ 1 , 3 , 4 ] [1,3,4] [1,3,4] is also not a permutation ( n = 3 n=3 n=3 but there is 4 4 4 in the array).

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^{4} 1t104) — the number of test cases. The description of the test cases follows.

The only line of each test case contains two integers n n n and k k k ( 1 ≤ n ≤ 2 ⋅ 1 0 5 , 0 ≤ k ≤ 1 0 12 1 \le n \le 2 \cdot 10^{5}, 0 \le k \le 10^{12} 1n2105,0k1012) — the length of the permutation and the required Manhattan value.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^{5} 2105.

Output

For each test case, if there is no suitable permutation, output “No”. Otherwise, in the first line, output “Yes”, and in the second line, output n n n distinct integers p 1 , p 2 , … , p n p_1, p_2, \ldots, p_n p1,p2,,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1pin) — a suitable permutation.

If there are multiple solutions, output any of them.

You can output the answer in any case (for example, the strings “yEs”, “yes”, “Yes”, and “YES” will be recognized as a positive answer).

Example

input
8
3 4
4 5
7 0
1 1000000000000
8 14
112 777
5 12
5 2
output
Yes
3 1 2
No
Yes
1 2 3 4 5 6 7
No
Yes
8 2 3 4 5 6 1 7
No
Yes
5 4 3 1 2
Yes
2 1 3 4 5

Note

In the first test case, the permutation [ 3 , 1 , 2 ] [3, 1, 2] [3,1,2] is suitable, its Manhattan value is ∣ 3 − 1 ∣ + ∣ 1 − 2 ∣ + ∣ 2 − 3 ∣ = 2 + 1 + 1 = 4 |3 - 1| + |1 - 2| + |2 - 3| = 2 + 1 + 1 = 4 ∣31∣+∣12∣+∣23∣=2+1+1=4.

In the second test case, it can be proven that there is no permutation of length 4 4 4 with a Manhattan value of 5 5 5.

In the third test case, the permutation [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] [1,2,3,4,5,6,7] [1,2,3,4,5,6,7] is suitable, its Manhattan value is ∣ 1 − 1 ∣ + ∣ 2 − 2 ∣ + ∣ 3 − 3 ∣ + ∣ 4 − 4 ∣ + ∣ 5 − 5 ∣ + ∣ 6 − 6 ∣ + ∣ 7 − 7 ∣ = 0 |1-1|+|2-2|+|3-3|+|4-4|+|5-5|+|6-6|+|7-7|=0 ∣11∣+∣22∣+∣33∣+∣44∣+∣55∣+∣66∣+∣77∣=0.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n, k;cin >> n >> k;if (n * n / 2 < k || k & 1) {cout << "No" << endl;return;}cout << "Yes" << endl;std::vector<int> p(n + 1);int cnt = (n * n / 2 - k) / ((n + 1 >> 1) * 2), pos = ((n * n / 2 - k) % ((n + 1 >> 1) * 2)) / 2;for (int i = 1; i <= cnt; i ++)p[i] = i;for (int i = cnt + 1, j = n / 2 + 1; i <= cnt + (n + 1 >> 1); i ++, j ++)p[i] = j;for (int i = cnt + (n + 1 >> 1) + 1, j = cnt + 1; i <= n; i ++, j ++)p[i] = j;for (int i = cnt + (n + 1 >> 1) + 1, j = pos; j; j --, i --)swap(p[i], p[i - 1]);for (int i = 1; i <= n; i ++)cout << p[i] << " ";cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

D. Elections

Problem Statement

Elections are taking place in Berland. There are n n n candidates participating in the elections, numbered from 1 1 1 to n n n. The i i i-th candidate has a i a_i ai fans who will vote for him. Additionally, there are c c c people who are undecided about their favorite candidate, let’s call them undecided. Undecided people will vote for the candidate with the lowest number.

The candidate who receives the maximum number of votes wins the elections, and if multiple candidates receive the same maximum number of votes, the candidate with the lowest number among them wins.

You found these elections too boring and predictable, so you decided to exclude some candidates from them. If you do not allow candidate number i i i to participate in the elections, all a i a_i ai of his fans will become undecided, and will vote for the candidate with the lowest number.

You are curious to find, for each i i i from 1 1 1 to n n n, the minimum number of candidates that need to be excluded from the elections for candidate number i i i to win the elections.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 2 ⋅ 1 0 4 1 \leq t \leq 2 \cdot 10^4 1t2104) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers n n n and c c c ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105, 0 ≤ c ≤ 1 0 9 0 \le c \le 10^9 0c109) — the number of candidates in the elections and the number of undecided people.

The second line of each test case contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an ( 0 ≤ a i ≤ 1 0 9 0 \le a_i \le 10^9 0ai109) — the number of fans for each candidate.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output n n n integers, the i i i-th of which should be equal to the minimum number of candidates that need to be excluded from the elections for candidate number i i i to win.

Example

Example

input
5
3 1
2 0 3
2 3
0 10
5 3
5 4 3 2 1
4 5
3 10 7 1
6 0
2 2 2 3 3 3
output
0 1 2
1 0
0 1 2 3 4
1 0 2 3
1 1 2 0 4 5

Note

In the first test case:

  • If all candidates are allowed, candidate number 1 1 1 will receive 3 3 3 votes ( 1 1 1 undecided person will vote for him), candidate number 2 2 2 will receive 0 0 0 votes, and candidate number 3 3 3 will receive 3 3 3 votes. Therefore, candidate number 1 1 1 wins (he received the same number of votes as candidate 3 3 3, but his number is lower), so the answer for him is 0 0 0.
  • If candidate number 1 1 1 is not allowed, his 2 2 2 fans will become undecided. Then candidate number 2 2 2 will receive 3 3 3 votes ( 3 3 3 undecided people will vote for him) and candidate number 3 3 3 will receive 3 3 3 votes. Therefore, candidate number 2 2 2 wins (he received the same number of votes as candidate 3 3 3, but his number is lower), so the answer for him is 1 1 1.
  • If candidates with numbers 1 1 1 and 2 2 2 are not allowed, candidate number 3 3 3 wins, so the answer for him is 2 2 2.

In the second test case, candidate number 1 1 1 will win if candidate number 2 2 2 is not allowed to participate.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n, c;cin >> n >> c;std::vector<int> a(n);int mx = 0, p;for (int i = 0; i < n; i ++) {cin >> a[i];if (a[i] > mx) mx = a[i], p = i;}int sum = 0;for (int i = 0; i < n; i ++) {if (p == 0 && i == 0 || i == p && a[0] + c < a[i]) cout << 0 << " ";else if (sum + c + a[i] >= mx) cout << i << " ";else cout << i + 1 << " ";sum += a[i];}cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

E. Computing Machine

Problem Statement

Sasha has two binary strings s s s and t t t of the same length n n n, consisting of the characters 0 and 1.

There is also a computing machine that can perform two types of operations on binary strings a a a and b b b of the same length k k k:

  1. If a i = a i + 2 = a_{i} = a_{i + 2} = ai=ai+2= 0, then you can assign b i + 1 : = b_{i + 1} := bi+1:= 1 ( 1 ≤ i ≤ k − 2 1 \le i \le k - 2 1ik2).
  2. If b i = b i + 2 = b_{i} = b_{i + 2} = bi=bi+2= 1, then you can assign a i + 1 : = a_{i + 1} := ai+1:= 1 ( 1 ≤ i ≤ k − 2 1 \le i \le k - 2 1ik2).

Sasha became interested in the following: if we consider the string a = s l s l + 1 … s r a=s_ls_{l+1}\ldots s_r a=slsl+1sr and the string b = t l t l + 1 … t r b=t_lt_{l+1}\ldots t_r b=tltl+1tr, what is the maximum number of 1 characters in the string a a a that can be obtained using the computing machine. Since Sasha is very curious but lazy, it is up to you to answer this question for several pairs ( l i , r i ) (l_i, r_i) (li,ri) that interest him.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^{4} 1t104) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n n n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105) — the length of the strings s s s and t t t.

The second line of each test case contains a binary string s s s of length n n n, consisting of the characters 0 and 1.

The third line of each test case contains a binary string t t t of length n n n, consisting of the characters 0 and 1.

The fourth line of each test case contains a single integer q q q ( 1 ≤ q ≤ 2 ⋅ 1 0 5 1 \le q \le 2 \cdot 10^5 1q2105) — the number of queries.

The i i i-th of the following lines contains two integers l i l_{i} li and r i r_{i} ri ( 1 ≤ l i ≤ r i ≤ n 1 \le l_{i} \le r_{i} \le n 1lirin) — the boundaries of the i i i-th pair of substrings that interest Sasha.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105 and the sum of q q q over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output q q q integers — the answers to all queries.

Example

input
3
4
1111
0000
2
1 2
2 4
4
1010
1101
2
1 3
1 4
6
010101
011010
5
2 3
1 6
2 5
4 4
3 6
output
2
3
2
3
1
4
3
1
2

Note

In the first test case:

  • In the first query, a = a = a= 11, so the maximum number of 1 characters is 2 2 2.
  • In the second query, a = a = a= 111, so the maximum number of 1 characters is 3 3 3.

In the second test case:

  • In the first query, a = a = a= 101 and b = b = b= 110. No operations can be performed, so the maximum number of 1 characters is 2 2 2.
  • In the second query, a = a = a= 1010 and b = b = b= 1101. Since a 2 = a 4 = a_2 = a_4 = a2=a4= 0, we can assign b 3 : = b_3 := b3:= 1. Now b 1 = b 3 = b_1 = b_3 = b1=b3= 1, so we can assign a 2 : = a_2 := a2:= 1. The string a a a becomes 1110, so the maximum number of 1 characters is 3 3 3.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, q, cnt;
string a, b, c, d;
int tot[N];int work(int l, int r) {string s = b, t = a;for (int i = l; i <= r - 2; i ++)if (a[i] == a[i + 2] && a[i] == '0') s[i + 1] = '1';for (int i = l; i <= r - 2; i ++)if (s[i] == s[i + 2] && s[i] == '1') t[i + 1] = '1';int res = 0;for (int i = l; i <= r; i ++)res += t[i] == '1';return res;
}void solve() {cin >> n >> a >> b >> q;a = ' ' + a, b = ' ' + b, c = a, d = b;for (int i = 1; i <= n - 2; i ++)if (c[i] == c[i + 2] && c[i] == '0') d[i + 1] = '1';for (int i = 1; i <= n - 2; i ++)if (d[i] == d[i + 2] && d[i] == '1') c[i + 1] = '1';for (int i = 1; i <= n; i ++)tot[i] = tot[i - 1] + (c[i] == '1');while (q -- ) {int l, r;cin >> l >> r, cnt ++;if (r - l + 1 <= 4) {cout << work(l, r) << endl;continue;}int res = tot[r] - tot[l - 1];if (d[l - 1] == d[l + 1] && d[l - 1] == '1' && a[l] == '0') res --;if (l + 1 <= n && a[l - 1] == '0' && a[l + 1] == '0' && b[l] == '0') {if (l + 2 <= n && d[l + 2] == '1') res --;}if (r + 1 <= n && d[r - 1] == d[r + 1] && d[r + 1] == '1' && a[r] == '0') res --;if (r + 1 <= n && a[r - 1] == '0' && a[r + 1] == '0' && b[r] == '0') {if (r - 2 >= 1 && d[r - 2] == '1') res --;}cout << res << endl;}
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

F. Large Graph

Problem Statement

Given an array a a a of length n n n. Let’s construct a square matrix b b b of size n × n n \times n n×n, in which the i i i-th row contains the array a a a cyclically shifted to the right by ( i − 1 ) (i - 1) (i1). For example, for the array a = [ 3 , 4 , 5 ] a = [3, 4, 5] a=[3,4,5], the obtained matrix is

b = [ 3 4 5 5 3 4 4 5 3 ] b = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 3 & 4 \\ 4 & 5 & 3 \end{bmatrix} b= 354435543

Let’s construct the following graph:

  • The graph contains n 2 n^2 n2 vertices, each of which corresponds to one of the elements of the matrix. Let’s denote the vertex corresponding to the element b i , j b_{i, j} bi,j as ( i , j ) (i, j) (i,j).
  • We will draw an edge between vertices ( i 1 , j 1 ) (i_1, j_1) (i1,j1) and ( i 2 , j 2 ) (i_2, j_2) (i2,j2) if ∣ i 1 − i 2 ∣ + ∣ j 1 − j 2 ∣ ≤ k |i_1 - i_2| + |j_1 - j_2| \le k i1i2+j1j2k and gcd ⁡ ( b i 1 , j 1 , b i 2 , j 2 ) > 1 \gcd(b_{i_1, j_1}, b_{i_2, j_2}) > 1 gcd(bi1,j1,bi2,j2)>1, where gcd ⁡ ( x , y ) \gcd(x, y) gcd(x,y) denotes the greatest common divisor of integers x x x and y y y.

Your task is to calculate the number of connected components † ^{\dagger} in the obtained graph.

† ^{\dagger} A connected component of a graph is a set of vertices in which any vertex is reachable from any other via edges, and adding any other vertex to the set violates this rule.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 5 1 \leq t \leq 10^5 1t105) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers n n n and k k k ( 2 ≤ n ≤ 1 0 6 2 \le n \le 10^6 2n106, 2 ≤ k ≤ 2 ⋅ 1 0 6 2 \le k \le 2 \cdot 10^6 2k2106) — the length of the array and the parameter k k k.

The second line of each test case contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 6 1 \le a_i \le 10^6 1ai106) — the elements of the array a a a.

It is guaranteed that the sum of n n n over all test cases does not exceed 1 0 6 10^6 106.

Output

For each test case, output a single integer — the number of connected components in the obtained graph.

Example

input
6
3 3
3 4 5
3 3
3 4 9
3 2
3 4 9
2 2
2 8
5 3
8 27 5 4 3
4 10
2 2 2 2
output
3
2
3
1
4
1

Note

In the first test case, the matrix b b b is given in the statement. The first connected component contains the vertices ( 1 , 1 ) (1, 1) (1,1), ( 2 , 2 ) (2, 2) (2,2), and ( 3 , 3 ) (3, 3) (3,3). The second connected component contains the vertices ( 1 , 2 ) (1, 2) (1,2), ( 2 , 3 ) (2, 3) (2,3), and ( 3 , 1 ) (3, 1) (3,1). The third connected component contains the vertices ( 1 , 3 ) (1, 3) (1,3), ( 2 , 1 ) (2, 1) (2,1), and ( 3 , 2 ) (3, 2) (3,2). Thus, the graph has 3 3 3 connected components.

In the second test case, the following matrix is obtained:

b = [ 3 4 9 9 3 4 4 9 3 ] b = \begin{bmatrix} 3 & 4 & 9 \\ 9 & 3 & 4 \\ 4 & 9 & 3 \end{bmatrix} b= 394439943

The first connected component contains all vertices corresponding to elements with values 3 3 3 and 9 9 9. The second connected component contains all vertices corresponding to elements with the value 4 4 4.

In the fourth test case, all vertices are in one connected component.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e6 + 10;int n, m, k;
int a[N], b[N], p[N];
int st[N], prime[N], idx;
std::vector<int> fact[N], pos[N];int find(int x) {if (p[x] != x) p[x] = find(p[x]);return p[x];
}
void Euler(int lim) {st[1] = 1;for (int i = 2; i <= lim; i ++) {if (!st[i]) prime[ ++ idx] = i;for (int j = 1; prime[j] * i <= lim; j ++) {st[prime[j] * i] = 1;if (i % prime[j] == 0) break;}}
}
void solve() {cin >> n >> k;for (int i = 1; i <= n; i ++)cin >> a[i];m = 0;for (int i = 2; i <= n; i ++) b[ ++ m] = a[i];b[ ++ m] = a[1];for (int i = 2; i <= n; i ++) b[ ++ m] = a[i];int res = m;set<int> avl;for (int i = 1; i <= m; i ++) {p[i] = i, res += (b[i] == 1) * ((m + 1 >> 1) - abs(i - (m + 1 >> 1)) - 1);for (auto v : fact[b[i]])if (!st[v])pos[v].push_back(i), avl.insert(v);}for (auto i : avl)for (int j = 1; j < pos[i].size(); j ++) {if (pos[i][j] - pos[i][j - 1] <= k) {int pa = find(pos[i][j]), pb = find(pos[i][j - 1]);if (pa != pb) {p[pa] = pb;res --;}}}cout << res << endl;for (int i = 1; i <= m; i ++)for (auto v : fact[b[i]])pos[v].clear();
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);for (int i = 1; i < (N >> 1); i ++)for (int j = i; j < (N >> 1); j += i)fact[j].push_back(i);Euler(N >> 1);int dt;cin >> dt;while (dt --) solve();return 0;
}

视频讲解

Codeforces Round 953 (Div. 2)(A ~ F 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/29868.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【HTML01】HTML基础-基本元素-附带案例-作业

文章目录 HTML 概述学HTML到底学什么HTML的基本结构HTML的注释的作用html的语法HTML的常用标签&#xff1a;相关单词参考资料 HTML 概述 英文全称&#xff1a;Hyper Text Markup Language 中文&#xff1a;超文本标记语言&#xff0c;就将常用的50多个标记嵌入在纯文本中&…

spark常见面试题

文章目录 1.Spark 的运行流程&#xff1f;2.Spark 中的 RDD 机制理解吗&#xff1f;3.RDD 的宽窄依赖4.DAG 中为什么要划分 Stage&#xff1f;5.Spark 程序执行&#xff0c;有时候默认为什么会产生很多 task&#xff0c;怎么修改默认 task 执行个数&#xff1f;6.RDD 中 reduce…

从0到1上线小程序的步骤

文章目录 一、开发前的准备二、开发中三、开发完成的上线部署相关资料和网址 开发一个小程序&#xff08;例如微信小程序&#xff09;涉及到多个阶段&#xff0c;每个阶段都有特定的步骤和要求。以下是详细的步骤及相关资料和网址&#xff0c;帮助你在开发前、开发中和开发完成…

镜像源问题:pip,npm,git,Linux,docker

镜像源的作用 提高下载速度&#xff1a;镜像源通常位于全球不同的地理位置&#xff0c;用户可以选择离自己最近的镜像源下载软件或更新&#xff0c;从而大大提高下载速度和效率。 负载均衡&#xff1a;通过将下载请求分散到多个镜像源&#xff0c;可以减轻主服务器的负载&…

RabbitMQ 入门

目录 一&#xff1a;什么是MQ 二&#xff1a;安装RabbitMQ 三&#xff1a;在Java中如何实现MQ的使用 RabbitMQ的五种消息模型 1.基本消息队列&#xff08;BasicQueue&#xff09; 2.工作消息队列&#xff08;WorkQueue&#xff09; 3. 发布订阅&#xff08;Publish、S…

RIP、OSPF、IS-IS学习

文章目录 RIP (Routing Information Protocol) 路由信息协议OSPF (Open Shortest Path First) 开放最短路径优先IS-IS (Intermediate System to Intermediate System) 中间系统到中间系统 RIP (Routing Information Protocol) 路由信息协议 特性&#xff1a; 基于距离向量&am…

设计模式-面向对象设计原则

设计模式-面向对象的设计原则 依赖倒置原则开闭封闭原则单一职责原则Liskov替换原则接口隔离原则面向对象优先使用对象组合&#xff0c;而不是类继承。封装变化点针对接口编程&#xff0c;而不是针对实现编程 变化是复用的天地。面向对象设计最大的优势在于抵御变化。 重新认识…

【论文阅读】Multi-Camera Unified Pre-Training via 3D Scene Reconstruction

论文链接 代码链接 多摄像头三维感知已成为自动驾驶领域的一个重要研究领域&#xff0c;为基于激光雷达的解决方案提供了一种可行且具有成本效益的替代方案。具有成本效益的解决方案。现有的多摄像头算法主要依赖于单目 2D 预训练。然而&#xff0c;单目 2D 预训练忽略了多摄像…

【深度学习】GPT-3,Language Models are Few-Shot Learners(一)

论文&#xff1a; https://arxiv.org/abs/2005.14165 摘要 最近的研究表明&#xff0c;通过在大规模文本语料库上进行预训练&#xff0c;然后在特定任务上进行微调&#xff0c;可以在许多NLP任务和基准上取得显著的进展。虽然这种方法在结构上通常是任务无关的&#xff0c;但…

走进Web3时代的物联网领域:科技的无限可能

随着Web3技术的迅速发展&#xff0c;物联网&#xff08;IoT&#xff09;领域正迎来一场深刻的变革。本文将深入探讨Web3时代如何重新定义物联网的边界和未来发展的无限可能性&#xff0c;从技术原理到应用案例&#xff0c;为读者呈现一个充满挑战和机遇的全新科技景观。 1. Web…

GPU微架构综述

GPU微架构综述 摘要 图形处理单元&#xff08;GPU&#xff09;已成为现代计算系统中的关键组成部分&#xff0c;不仅在图形渲染方面发挥重要作用&#xff0c;还广泛应用于高性能计算、机器学习和科学计算等领域。本文综述了GPU微架构的发展历程和设计理念&#xff0c;探讨了其…

ffmpeg压缩视频

最近需要压缩视频&#xff0c;windows下没找到好的工具&#xff08;大部分工具需要收费&#xff09;&#xff0c;于是想到通过ffmpeg工具进行压缩&#xff1b;ffmpeg不仅是一款强大的视频、图片处理工具&#xff0c;还是一款开源的多媒体框架。 windows下可以下载ffmpeg&#…

【数据结构】练习集

数据的逻辑结构说明数据元素之间的顺序关系&#xff0c;它依赖于计算机的存储结构。&#xff08;F&#xff09; 在顺序表中逻辑上相邻的元素&#xff0c;其对应的物理位置也是相邻的。&#xff08;T&#xff09; 若一个栈的输入序列为{1, 2, 3, 4, 5}&#xff0c;则不可能得到…

mediasoup源码分析(三)channel创建及信令交互

mediasoup源码分析--channel创建及信令交互 概述跨职能图业务流程图代码剖析 概述 在golang实现mediasoup的tcp服务及channel通道一文中&#xff0c;已经介绍过信令服务中tcp和channel的创建&#xff0c;本文主要讲解c中mediasoup的channel创建&#xff0c;以及信令服务和medi…

HTML|02HTML标签

HTML标签的语义化 语义化就是&#xff1a;标签的含义HTML标签 排版标签标题标签h<h1></h1> 标签有h1-h6&#xff0c;没有h7段落标签p<p></p>水平线标签hr<hr /> 单标记换行标签br<br />div span标签用来布局的 文本格式化标签<b>&…

编程用什么电脑不卡的:深度解析与推荐

编程用什么电脑不卡的&#xff1a;深度解析与推荐 在编程的世界里&#xff0c;一台流畅不卡的电脑无疑是每个开发者的得力助手。然而&#xff0c;面对市场上琳琅满目的电脑品牌和型号&#xff0c;如何选择一台适合编程的电脑却成为了一个令人困惑的问题。本文将从四个方面、五…

如何避免接口重复请求(axios推荐使用AbortController)

前言&#xff1a; 我们日常开发中&#xff0c;经常会遇到点击一个按钮或者进行搜索时&#xff0c;请求接口的需求。 如果我们不做优化&#xff0c;连续点击按钮或者进行搜索&#xff0c;接口会重复请求。 以axios为例&#xff0c;我们一般以以下几种方法为主&#xff1a; 1…

「C系列」C 头文件及引发方法/操作

文章目录 一、C 头文件二、引用头文件的方法1. 使用尖括号 < > 引用标准库头文件2. 使用双引号 " " 引用用户自定义头文件 三、引用头文件的操作四、相关链接 一、C 头文件 在C语言中&#xff0c;头文件&#xff08;Header Files&#xff09;通常用于包含函数…

bashrc和profile区别

作用与目的&#xff1a; .bashrc&#xff1a;这个文件主要用于配置和自定义用户的终端环境和行为。每次启动新的终端时&#xff0c;.bashrc文件都会被执行&#xff0c;加载用户设置的环境变量、别名、函数等。这使得用户能够根据自己的喜好和需求来定制终端的行为和外观。profi…

如何通过编程获取桌面分辨率、操作像素点颜色、保存位图和JPG格式图片,以及图片数据的处理和存储方式

本节课在线学习视频&#xff08;网盘地址&#xff0c;保存后即可免费观看&#xff09;&#xff1a; ​​https://pan.quark.cn/s/c474d087e76f​​ 在图形编程中&#xff0c;获取桌面分辨率、操作像素点颜色、保存和处理图片数据是常见任务。本文将介绍如何通过编程实现这些操…