时间复杂度 空间复杂度分析

时间复杂度就是需要执行多少次,空间复杂度就是对象被创建了多少次。

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(2^n) < O(n!) < O(n^n)

这里写目录标题

    • 时间复杂度
      • O(1)
      • O(logn)、O(nlogn)
      • O(m+n)、O(m*n)
      • 最好、最坏情况时间复杂度
      • 平均情况时间复杂度
      • 均摊时间复杂度
    • 空间复杂度分析

时间复杂度

牢记一个原则:总的时间复杂度就等于量级最大的那段代码的时间复杂度。
说简单点就是执行次数最多的那段代码。

O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

 int i = 8;int j = 6;int sum = i + j;

只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

 i=1;while (i <= n)  {i = i * 2;}

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
在这里插入图片描述

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

 i=1;while (i <= n)  {i = i * 3;}

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O(log3n)。

实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?

基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

int cal(int m, int n) {int sum_1 = 0;int i = 1;for (; i < m; ++i) {sum_1 = sum_1 + i;}int sum_2 = 0;int j = 1;for (; j < n; ++j) {sum_2 = sum_2 + j;}return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

最好、最坏情况时间复杂度

// n 表示数组 array 的长度
int find(int[] array, int n, int x) {int i = 0;int pos = -1;for (; i < n; ++i) {if (array[i] == x) pos = i;}return pos;
}

这段代码要实现的功能是,在一个无序的数组(array)中,查找变量 x 出现的位置。如果没有找到,就返回 -1。这段代码的复杂度是 O(n),其中,n 代表数组的长度。

我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码写得不够高效。我们可以这样优化一下这段查找代码。

// n 表示数组 array 的长度
int find(int[] array, int n, int x) {int i = 0;int pos = -1;for (; i < n; ++i) {if (array[i] == x) {pos = i;break;}}return pos;
}

这个时候,问题就来了。我们优化完之后,这段代码的时间复杂度还是 O(n) 吗?

因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。

为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度、最坏情况时间复杂度和平均情况时间复杂度。

顾名思义,最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像我们刚刚讲到的,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。

同理,最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。就像刚举的那个例子,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

平均情况时间复杂度

最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度,后面我简称为平均时间复杂度。

平均时间复杂度又该怎么分析呢?我还是借助刚才查找变量 x 的例子来给你解释。

要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

在这里插入图片描述
我们知道,时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。

这个结论虽然是正确的,但是计算过程稍微有点儿问题。究竟是什么问题呢?我们刚讲的这 n+1 种情况,出现的概率并不是一样的。我带你具体分析一下。(这里要稍微用到一点儿概率论的知识,不过非常简单,你不用担心。)

我们知道,要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。

因此,前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

在这里插入图片描述
这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

实际上,在大多数情况下,我们并不需要区分最好、最坏、平均情况时间复杂度三种情况。很多时候,我们使用一个复杂度就可以满足需求了。只有同一块代码在不同的情况下,时间复杂度有量级的差距,我们才会使用这三种复杂度表示法来区分。

均摊时间复杂度

到此为止,你应该已经掌握了算法复杂度分析的大部分内容了。下面我要给你讲一个更加高级的概念,均摊时间复杂度,以及它对应的分析方法,摊还分析(或者叫平摊分析)。

均摊时间复杂度,听起来跟平均时间复杂度有点儿像。对于初学者来说,这两个概念确实非常容易弄混。我前面说了,大部分情况下,我们并不需要区分最好、最坏、平均三种复杂度。平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。

 // array 表示一个长度为 n 的数组// 代码中的 array.length 就等于 nint[] array = new int[n];int count = 0;void insert(int val) {if (count == array.length) {int sum = 0;for (int i = 0; i < array.length; ++i) {sum = sum + array[i];}array[0] = sum;count = 1;}array[count] = val;++count;}

我先来解释一下这段代码。这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。

那这段代码的时间复杂度是多少呢?你可以先用我们刚讲到的三种时间复杂度的分析方法来分析一下。

最理想的情况下,数组中有空闲空间,我们只需要将数据插入到数组下标为 count 的位置就可以了,所以最好情况时间复杂度为 O(1)。最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。

那平均时间复杂度是多少呢?答案是 O(1)。我们还是可以通过前面讲的概率论的方法来分析。

假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:
在这里插入图片描述
至此为止,前面的最好、最坏、平均时间复杂度的计算,理解起来应该都没有问题。但是这个例子里的平均复杂度分析其实并不需要这么复杂,不需要引入概率论的知识。这是为什么呢?我们先来对比一下这个 insert() 的例子和前面那个 find() 的例子,你就会发现这两者有很大差别。

首先,find() 函数在极端情况下,复杂度才为 O(1)。但 insert() 在大部分情况下,时间复杂度都为 O(1)。只有个别情况下,复杂度才比较高,为 O(n)。这是 insert()第一个区别于 find() 的地方。

我们再来看第二个不同的地方。对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。

所以,针对这样一种特殊场景的复杂度分析,我们并不需要像之前讲平均复杂度分析方法那样,找出所有的输入情况及相应的发生概率,然后再计算加权平均值。

针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度

那究竟如何使用摊还分析法来分析算法的均摊时间复杂度呢?

我们还是继续看在数组中插入数据的这个例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。你都理解了吗?

均摊时间复杂度和摊还分析应用场景比较特殊,所以我们并不会经常用到。为了方便你理解、记忆,我这里简单总结一下它们的应用场景。如果你遇到了,知道是怎么回事儿就行了。

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度

空间复杂度分析

空间复杂度简单点可以理解:创建了多少次,总的空间复杂度就等于量级最大的那段代码的空间复杂度

分析方法同时间复杂度一样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/29004.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

32、循环语句while+until

一、循环控制语句 双层循环和循环语句的使用&#xff0c;while和until的语法使用 1、进入调试模式 在脚本里第一行写入set -x bash -x 脚本 1.1、echo 打印 continue&#xff1a;跳出当次&#xff0c;后续的条件成立&#xff0c;继续执行。 break&#xff1a;一旦break&am…

实时数仓Hologres V2.2发布,Serverless Computing降本20%

Highlight 新发布Serverless Computing&#xff0c;提升大任务稳定性&#xff0c;同时可降低20%计算成本 引擎性能优化&#xff0c;TPC-H 1TB测试相对V1.X 提升100% 实时湖仓加速架构升级&#xff0c;支持Paimon&#xff0c;直读ORC、Parquet数据性能提升5倍以上 新增实例监…

LLM中表格处理与多模态表格理解

文档处理中不可避免的遇到表格&#xff0c;关于表格的处理问题&#xff0c;整理如下&#xff0c;供各位参考。 问题描述 RAG中&#xff0c;对上传文档完成版式处理后进行切片&#xff0c;切片前如果识别文档元素是表格&#xff0c;那么则需要对表格进行处理。一般而言&#x…

JupyterLab使用指南(二):JupyterLab基础

第2章 JupyterLab基础 2.1 JupyterLab界面介绍 JupyterLab的用户界面非常直观和灵活。它包括文件浏览器、工作区、多标签页、命令面板和侧边栏等功能。以下是各个部分的详细介绍&#xff1a; 2.1.1 文件浏览器 文件浏览器位于界面左侧&#xff0c;用于导航和管理文件。你可…

计算机网络:网络层 - 虚拟专用网 VPN 网络地址转换 NAT

计算机网络&#xff1a;网络层 - 虚拟专用网 VPN & 网络地址转换 NAT 专用地址与全球地址虚拟专用网 VPN隧道技术 网络地址转换 NAT网络地址与端口号转换 NAPT 专用地址与全球地址 考虑到 IP 地址的紧缺&#xff0c;以及某些主机只需要和本机构内部的其他主机进行通信&…

cbsd创建ubuntu jail 时下载系统慢的问题解决

下载时速度慢 使用cbsd创建ubuntu jail的时候 cbsd jconstruct-tui 提示&#xff1a; no base dir in: /usr/jails/basejail/base_amd64_amd64_jammy Select base sources:0 .. CANCELa .. build b .. extract c .. pkg d .. repo 选了pkg没找到 fetch: https://pkg.convec…

【减法网络】Minusformer:通过逐步学习残差来改进时间序列预测

摘要 本文发现泛在时间序列(TS)预测模型容易出现严重的过拟合。为了解决这个问题&#xff0c;我们采用了一种去冗余的方法来逐步恢复TS的真实值。具体来说&#xff0c;我们引入了一种双流和减法机制&#xff0c;这是一种深度Boosting集成学习方法。通过将信息聚合机制从加法转…

【第16章】Vue实战篇之跨域解决

文章目录 前言一、浏览器跨域二、配置代理1.公共请求2.代理配置 总结 前言 前后端项目分离衍生出浏览器跨域问题&#xff0c;开发之前我们通过配置代理解决这个问题。 一、浏览器跨域 浏览器的跨域问题主要是由于浏览器的同源策略导致的。同源策略是浏览器的一个安全功能&…

OpenGL3.3_C++_Windows(11)

git submodule项目子模块 Git Submodule &#xff08;子模块的代码并不直接存储在父仓库中&#xff0c;而是通过一个指针来维护&#xff09;克隆含有子模块的仓库时&#xff0c;使用git管理Git Clone &#xff08;复制一份完整的Git仓库到本地&#xff09;若仓库包含子模块&am…

【设计模式-12】代理模式的代码实现及使用场景

&emsp&#xff1b;代理模式是一种应用很广发的结构性设计模式&#xff0c;它的设计初衷就是通过引入新的代理对象&#xff0c;在客户端和目标对象之间起到中介的作用&#xff0c;从而实现控制客户端对目标对象的访问&#xff0c;比如增强或者阉割某些能力。 1. 概述 代理模…

《优化接口设计的思路》系列:第1篇—什么是接口缓存

一、缓存的定义&#xff1a; 缓存是一种存储数据的技术&#xff0c;用于提高数据访问的速度和效率。缓存通常存储在内存中&#xff0c;因为内存访问速度远快于磁盘和网络。数据接口通常会使用缓存技术&#xff0c;以降低对后端数据存储和处理的压力&#xff0c;提高系统性能。…

⭐ ▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch3 贝尔曼最优公式 【压缩映射定理】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍 1、视频 学堂在线 习题 2、过 电子书&#xff0c;补充 【下载&#xff1a;本章 PDF 电子书 GitHub 界面链接】 [又看了一遍视频] 3、总体 MOOC 过一遍 习题 学堂在线 课程页面链接 中国大学MOOC 课程页面链接 B 站 视频链…

c++qt合并两张灰度图像

需求&#xff1a;将两张尺寸相同的灰度图像进行合并&#xff0c;合并后的图像&#xff0c;每个像素点灰度值为两张原图对应像素点灰度值之和。若超过255&#xff0c;则最大为255。 方法一&#xff1a; 将图像读取为cv::Mat&#xff0c;再调用opencv的cv::add方法&#xff0c;进…

【ai】初识pytorch

初识PyTorch 大神的例子运行: 【ai】openai-quickstart 配置pycharm工程 简单例子初识一下Pytorch 好像直接点击下载比较慢? 大神的代码 在这个例子中,首先定义一个线性模型,该模型有一个输入特征和一个输出特征。然后定义一个损失函数和一个优化器,接着生成一些简单的线性…

Golang内存模型与分配机制

简述 mheap为堆&#xff0c;堆和进程是一对一的&#xff1b;mcentral&#xff08;小mheadp&#xff09;&#xff0c;mcahe&#xff08;GMP的P私有&#xff09;&#xff0c;分配内存顺序由后向前。 在解决这个问题&#xff0c;Golang 在堆 mheap 之上&#xff0c;依次细化粒度&a…

前端构建工具用得好,构建速度提升 10 倍

今天来盘点一下前端构建工具。 Turbopack Turbopack&#xff0c;由Vercel开源&#xff0c;是下一代高性能的JavaScript应用构建工具&#xff0c;目前用于 Next.js 中。Turbopack旨在通过革新JavaScript应用的打包流程来显著提升应用性能&#xff0c;它专注于缩短加载时间&…

Python工具箱系列(五十三)

​​水印 水印是一种常见的图片处理需求。当既需要展示&#xff0c;又需要保护知识产权时&#xff0c;就需要使用文字或者图片来打水印。下面的代码展示了文字水印与图片水印的过程。 ​--javascripttypescriptbashsqljsonhtmlcssccppjavarubypythongorustmarkdown from pat…

游戏找不到steam_api64.dll无法继续执行代码的解决方法

在电脑使用过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“steam_api64.dll丢失”。那么&#xff0c;steam_api64.dll到底是干嘛的&#xff1f;为什么会丢失&#xff1f;对电脑有什么具体影响&#xff1f;如何解决这个问题&#xff1f;本文将为您详细…

Python基础教程(九):Lambda 函数

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

vivado NODE、PACKAGE_PIN

节点是Xilinx部件上用于路由连接或网络的设备对象。它是一个 WIRE集合&#xff0c;跨越多个瓦片&#xff0c;物理和电气 连接在一起。节点可以连接到单个SITE_&#xff0c; 而是简单地将NETs携带进、携带出或携带穿过站点。节点可以连接到 任何数量的PIP&#xff0c;并且也可以…