分布式与一致性协议之CAP(一)

CAP理论

概述。

在开发分布式系统的时候,会遇到一个非常棘手的问题,那就是如何根据业务特点,为系统设计合适的分区容错一致性模型,以实现集群能力。这个问题棘手在当发生分区错误时,应该如何保障系统稳定运行而不影响业务。CAP理论对分布式系统的特性做了高度抽象,比如抽象成一致性、可用性、分区容错性,并对特性间的冲突(也就是CAP不可能三角)做了总结。
问题来了:什么是一致性、可用性和分区容错性?它们之间有什么关系?我们又该如何使用CAP理论来思考和设计分区容错一致性模型呢?

CAP理论:分布式系统的PH试纸,用它来测酸碱度。

CAP理论就像PH试纸一样,可以用来度量分布式系统的酸碱度,帮助我们思考如何设计合适的酸碱度,在一致性和可用性之间进行妥协、这种,进而设计出满足场景特点的分布式系统。那么如何理解CAP理论呢?

CAP三指标

CAP理论对分布式系统的特性做了高度抽象,形成了3个指标:

  • 1.一致性(Consistency);
  • 2.可用性(Availability)
  • 3.分区容错性(Parition Tolerance)
    一致性是指客户端的每次读操作,不管访问哪个节点,要么读到的是同一份最新写入的数据,要么读取失败。大家可以把一致性看作分布式系统对访问自己的客户端的一种承诺:不管你访问哪个节点,要么我给你返回的
    是绝对一致的最新写入的数据,要么你读取失败。可以看到,一致性强调的是数据正确。

一致性指标

描述的是分布式系统的一个非常重要的特性,强调的是数据正确。也就是说,对客户端而言,它每次都能读取到最新写入的数据。

不过集群毕竟不是单机,当发生分区故障时,不能仅仅因为节点间出现了通信问题,无法响应最新写入的数据,就在客户端查询数据时一直想客户端返回出错信息,举个例子说明.业务集群中的一些关键系统,比如名字路由系统(基于Raft算法的强一致性系统),如果仅仅因为发生了分区故障,
无法响应最新数据(比如因通信异常,候选人都无法赢得大多数选票,使得集群没有了领导者),为了不破坏一致性,在客户端查询相关路由信息时,系统就一直向客户端返回出错信息,此时相关的业务都将因为获取不倒指定路由信息而不可用、瘫痪,出现灾难性的故障。此时,我们就需要牺牲数据正确的要求,在每个节点使用本地数据来响应客户端请求,以保证服务可用,这也是另外一个指标,可用性。

例子
  • 举个例子。两个节点的KV存储系统,原始的KV记录为"X=1",如图所示:
    在这里插入图片描述
    紧接着,客户端向节点1发送写请求"SET X=2",如图所示
    在这里插入图片描述
    如果节点1收到写请求后,只将节点1的X值更新为2,然后返回Success给客户端,如图所示
    在这里插入图片描述
    此时如果客户端访问节点2执行读操作,就无法读到最新写入的X值,这就不满足一致性了,如图所示
    在这里插入图片描述
    如果节点1收到写请求后,通过节点间的通信,同时将节点1和节点2的X值都更新为2,然后返回Success给客户端,如图所示
    在这里插入图片描述
    那么在完成写请求后,不管客户端访问哪个节点,读取到的都是同一份最新写入的数据,如图所示,这就叫一致性。
    在这里插入图片描述

可用性

是指任何来自客户端的请求,不管访问哪个非故障节点,都能得到响应数据,但不保证是同一份最新数据。也可以把可用性看作分布式系统对访问本系统的客户端的另外一种承诺:我尽力给你返回数据,不会不响应你,但是我不保证每个节点给你的数据都是最新的。这个指标抢到的是服务可用,但不保证数据正确。

例子
  • 举个例子。比如,用户可以选择向节点1或者节点2发起读操作,如果
    不考虑节点间的数据是否一致,只要节点服务器收到请求就立即响应X的值,如图所示,那么两个节点的服务是满足可用性的
    在这里插入图片描述

分区容错性

是指当节点间出现任意数量的消息丢失或高延迟的时候,系统仍然可以继续工作,也就是说,分布式系统告诉访问本系统的客户端:不管我的内部出现什么样的数据同步问题,我都会一直运行。这个指标强调的是集群对分区故障的容错能力.因为分布式系统与单机系统不同,它涉及多节点间的通信和交互,节点间的分区故障是必然发生的,所以,在分布式系统中
分区容错性是必须要考虑的。

现在在了解了一致性、可用性和分区容错性,那么在涉及分布式系统时,是从一致性、可用性、分区容错性中选择其一,还是三者都可以选择呢?这3个指标之间有什么冲突吗?

例子
  • 举个例子。当节点1和节点2的通信出现问题时,如果系统仍能继续工作,那么两个节点是满足分区容错性的
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/2853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于STM32和阿里云的智能台灯(STM32+ESP8266+MQTT+阿里云+语音模块)

一、主要完成功能 1、冷光模式和暖光模式两种灯光 主要支持冷光和暖光模式两种,可以通过语音模块或手机app远程切换冷暖光 2、自动模式和手动模式 主要支持手动模式和自动两种模式(app或语音助手切换) (1)自动模式:根据环境光照…

第七天 dfs剪枝优化

第七天 dfs剪枝&优化 1可行性剪枝 2最优性剪枝 3重复性剪枝 题 1 输入 5 5 6 …S. XX.X. …X… …D.X …X… 输出 YES —————————————— 题解 #include<iostream> #include<cstdio> using namespace std; const int N 10; int n,m,T; char …

绿色便携方式安装apache+mysql+tomcat+php集成环境并提供控制面板

绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境 目录 绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境[TOC](目录) 前言一、XAMPP二、安装和使用1.安装2.使用 三、可能的错误1、检查端口占用2、修改端口 前言 安装集成环境往往配置复杂&#xff0c…

自动化立体库安全使用管理制度

导语 大家好&#xff0c;我是智能仓储物流技术研习社的社长&#xff0c;老K。专注分享智能仓储物流技术、智能制造等内容。 新书《智能物流系统构成与技术实践》 完整版文件和更多学习资料&#xff0c;请球友到知识星球 【智能仓储物流技术研习社】自行下载 关于自动化立体库安…

四、Flask进阶

Flask-Cache pip install flask-caching安装flask_cache初始化 # ext.py from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_caching import Cachedb SQLAlchemy() migrate Migrate() cache Cache(config{CACHE_TYPE: simple # 缓存…

MybatisPlus(简单CURD,MP的实体类注解,MP条件查询,MP分页查询,MP批量操作,乐观锁,代码生成器)

目录 一、MP入门 1. MP是什么 2. MP使用入门 1 说明 2 准备MP项目环境 1) 添加依赖 2) 创建配置文件 3) 创建引导类 3 MP使用入门 1 创建实体类 2 创建Mapper 3 使用测试 3. 小结 二、MP简单CURD【重点】 1. 说明 2. 示例 3. 小结 三、MP的实体类注解[重点] …

字符串漏洞注入深入学习

字符串型漏洞注入&#xff0c;特别是针对Web应用程序的SQL注入&#xff0c;是一种常见的网络安全威胁。它涉及攻击者在不受控制的情况下&#xff0c;通过构造特定的字符串输入&#xff0c;干扰或改变应用程序中原有的SQL查询语句&#xff0c;从而执行恶意的SQL代码。 要深入学…

微软Phi-3,3.8亿参数能与Mixtral 8x7B和GPT-3.5相媲美,量化后还可直接在IPhone中运行

Phi-3系列 Phi-3是一系列先进的语言模型&#xff0c;专注于在保持足够紧凑以便在移动设备上部署的同时&#xff0c;实现高性能。Phi-3系列包括不同大小的模型&#xff1a; Phi-3-mini&#xff08;38亿参数&#xff09; - 该模型在3.3万亿个令牌上进行训练&#xff0c;设计得足…

【Stable Diffusion系列】(一):AI绘画本地部署教程

目录 一、总览 二、本地部署 1、安装cuda 2、安装python 3、安装git 4、方法一 1&#xff09;获取安装包 2&#xff09;update 3&#xff09;run 5、方法二 1&#xff09;git clone 2&#xff09;双击webui-user.bat 3&#xff09;更新 6、设置启动参数 7、…

指针(5)

前言 本节是有关指针内容的最后一节&#xff0c;本节的内容以讲解指针习题为主&#xff0c;那么就让我们一起来开启本节的学习吧&#xff01; sizeof和strlen的对比 1.sizeof 我们在学习操作符的时候&#xff0c;学习了sizeof。sizeof存在的意义是用来计算变量所占用的内存空…

AI大模型日报#0424:全球首个AI基因编辑器、出门问问上市、微软开源Phi-3 Mini、昆仑万维年收49亿

导读&#xff1a; 欢迎阅读《AI大模型日报》&#xff0c;内容基于Python爬虫和LLM自动生成。目前采用“文心一言”生成了每条资讯的摘要。标题: 爱诗科技完成A2轮超亿元融资&#xff0c;蚂蚁集团领投摘要: 爱诗科技完成A2轮超亿元融资&#xff0c;成为视频大模型领域融资规模最…

STM32学习和实践笔记(20):定时器

1.定时器介绍 STM32F1的定时器一共有8个&#xff0c;由2个基本定时器&#xff08;TIM6、TIM7&#xff09;、4个通用定时器&#xff08;TIM2-TIM5&#xff09;和2个高级定时器&#xff08;TIM1、TIM8&#xff09;组成。 基本定时器的功能最为简单&#xff0c;类似于51单片机内定…

【行为型模式】中介者模式

一、中介者模式概述 中介者模式定义&#xff1a;用一个中介对象来封装一系列的对象交互&#xff0c;中介者使各对象不需要显式地相互引用&#xff0c;从而使其耦合松散&#xff0c;而且可以独立地改变它们之间的交互。中介者模式又称为调停者模式。(对象行为型模式) 中介者模式…

python+django校园社交高校交友网站2x7r5.

本课题使用Python语言进行开发。代码层面的操作主要在PyCharm中进行&#xff0c;将系统所使用到的表以及数据存储到MySQL数据库中&#xff0c;方便对数据进行操作本课题基于WEB的开发平台&#xff0c;设计的基本思路是&#xff1a; 前端&#xff1a;vue.jselementui 框架&#…

Node.JS安装及配置教程(Windows)【安装】

文章目录 一、 Node.JS 下载1. 官网下载&#xff08;1&#xff09;国内地址&#xff08;2&#xff09;国外地址 2. 其它渠道 二、 Node.JS 安装三、 Node.JS验证四、 Node.JS 配置&#xff08;可选&#xff09;1. 配置全局模块安装路径方法一方法二2. 配置国内镜像 五、 yarn 安…

企业数智化:为什么选择梧桐数据库?

个人介绍&#xff1a;艺名司镜233&#xff0c;是中国移动梧桐数据库研发团队成员&#xff0c;从事相关的技术开发近5年了。最让我觉得自豪的不是在研发这款数据库&#xff0c;而是我们用代码&#xff0c;切实地帮助企业解决数据的困扰&#xff0c;切实地解决社会的问题。 本篇文…

【炼金术士】BatchSize对网络训练的影响

文章目录 1 BatchSize对于网络训练的影响2 调整学习率可以提高大BatchSize的性能3 实际训练时的建议3.1 设置初始学习率的方法3.2 多卡训练时学习率的设置 参考资料&#xff1a; 【深度学习】Batch Size对神经网络训练的影响【AI不惑境】学习率和batchsize如何影响模型的性能&…

AXI4---低功耗接口

在电子系统设计中&#xff0c;"low-power interface"&#xff08;低功耗接口&#xff09;是指专为减少能耗而设计的硬件接口。这类接口在不需要牺牲性能的情况下&#xff0c;通过各种技术降低功耗&#xff0c;对于移动设备、嵌入式系统和其他电池供电的应用来说尤其重…

如何更好的管理个人财务?使用极空间部署私有记账系统Firefly III

如何更好的管理个人财务&#xff1f;使用极空间部署私有记账系统Firefly III 哈喽小伙伴们好&#xff0c;我是Stark-C~ 不知道屏幕前的各位“富哥”日常生活中是怎么管理自己巨额财富的&#xff0c;反正对于像我这样年薪过千的摸鱼族来说&#xff0c;请一个专业的理财顾问多多…

Laravel 6 - 第十三章 请求

​ 文章目录 Laravel 6 - 第一章 简介 Laravel 6 - 第二章 项目搭建 Laravel 6 - 第三章 文件夹结构 Laravel 6 - 第四章 生命周期 Laravel 6 - 第五章 控制反转和依赖注入 Laravel 6 - 第六章 服务容器 Laravel 6 - 第七章 服务提供者 Laravel 6 - 第八章 门面 Laravel 6 - …