自定义 LLM:LangChain与文心一言擦出火花

自定义 LLM

自定义 LLM 需要实现以下必要的函数:

  • _call :它需要接受一个字符串、可选的停用词,并返回一个字符串。

它还可以实现第二个可选的函数:

  • _identifying_params :用于帮助打印 LLM 信息。该函数应该返回一个字典。

使用LLM模块来封装我们的模型接口,可以带来许多好处,其中之一就是有利于与LangChain的其他模块进行协同工作。

下面我们通过 LangChain自定义LLM 实现文心一言 ERNIE-Bot-turbo 大模型接入:

代码语言:javascript

复制

import jsonimport timefrom typing import Any, List, Mapping, Optional, Dict, Union, Tupleimport loggingimport requestsfrom langchain.callbacks.manager import CallbackManagerForLLMRunfrom langchain.llms.base import LLMfrom langchain.utils import get_from_dict_or_envfrom pydantic import Field, root_validatorlogger = logging.getLogger(__name__)def get_access_token(api_key: str, secret_key: str):    """    使用 API Key,Secret Key 获取access_token    """    url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}"    payload = json.dumps("")    headers = {        'Content-Type': 'application/json',        'Accept': 'application/json'    }    resp = requests.request("POST", url, headers=headers, data=payload)    return resp.json().get("access_token")class ErnieLLm(LLM):    url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant"    model_name: str = Field(default="ERNIE-Bot-turbo", alias="model")    request_timeout: Optional[Union[float, Tuple[float, float]]] = None    temperature: float = 0.95    """temperature 说明:    (1)较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定    (2)默认0.95,范围 (0, 1.0],不能为0    (3)建议该参数和top_p只设置1个    (4)建议top_p和temperature不要同时更改    """    top_p: float = 0.8    """top_p 说明:    (1)影响输出文本的多样性,取值越大,生成文本的多样性越强    (2)默认0.8,取值范围 [0, 1.0]    (3)建议该参数和temperature只设置1个    (4)建议top_p和temperature不要同时更改    """    penalty_score: float = 1.0    """通过对已生成的token增加惩罚,减少重复生成的现象。说明:    (1)值越大表示惩罚越大    (2)默认1.0,取值范围:[1.0, 2.0]    """    ernie_api_key: Optional[str] = None    """文心一言大模型 apiKey"""    ernie_secret_key: Optional[str] = None    """文心一言大模型 secretKey"""    user_id: Optional[str] = None    """表示最终用户的唯一标识符,可以监视和检测滥用行为,防止接口恶意调用"""    streaming: bool = False    """是否以流式接口的形式返回数据,默认false"""    cache: bool = False    """是否开启缓存,默认为false"""    model_kwargs: Dict[str, Any] = Field(default_factory=dict)    """Holds any model parameters valid for `create` call not explicitly specified."""    @root_validator()    def validate_environment(cls, values: Dict) -> Dict:        """Validate that api key and python package exists in environment."""        values["ernie_api_key"] = get_from_dict_or_env(            values, "ernie_api_key", "ERNIE_API_KEY"        )        values["ernie_secret_key"] = get_from_dict_or_env(            values,            "ernie_secret_key",            "ERNIE_SECRET_KEY"        )        return values    @property    def _default_params(self) -> Dict[str, Any]:        """获取调用Ennie API的默认参数。"""        normal_params = {            "temperature": self.temperature,            "top_p": self.top_p,            "penalty_score": self.penalty_score,            "request_timeout": self.request_timeout,        }        return {**normal_params, **self.model_kwargs}    def _construct_query(self, prompt: str) -> Dict:        """构造请求体"""        query = {            "messages": [                {                    "role": "user",                    "content": prompt                }            ],            "stream": self.streaming,            "temperature": self.temperature,            "top_p": self.top_p,            "penalty_score": self.penalty_score,            "user_id": self.user_id,        }        return query    @property    def _identifying_params(self) -> Mapping[str, Any]:        """Get the identifying parameters."""        return {**{"model_name": self.model_name}, **self._default_params}    @property    def _llm_type(self) -> str:        return "ernie"    def _call(            self,            prompt: str,            stop: Optional[List[str]] = None,            run_manager: Optional[CallbackManagerForLLMRun] = None,            **kwargs: Any,    ) -> str:        """_call 实现对模型的调用"""        # construct query        query = self._construct_query(prompt=prompt)        # post        _headers = {"Content-Type": "application/json"}        with requests.session() as session:            resp = session.post(                self.url + "?access_token=" + get_access_token(self.ernie_api_key, self.ernie_secret_key),                json=query,                headers=_headers,                timeout=60)            if resp.status_code == 200:                resp_json = resp.json()                predictions = resp_json["result"]                return predictions        return "请求失败"

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

### **使用自定义 LLM**
配置及加载环境变量

在 .env 文件中配置变量:

代码语言:javascript

复制

加载配置文件:

代码语言:javascript

复制

调用 LLM

最简单的调用:

代码语言:javascript

复制

运行结果:

代码语言:javascript

复制

也可以通过构造直接传入 ernie_api_keyernie_secret_key,如:

代码语言:javascript

复制

LLM 关键参数

我们可以通过调整 temperaturetop_ppenalty_score等参数来优化模型回答的结果。

temperature

说明: (1)较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定 (2)默认0.95,范围 (0, 1.0],不能为0 (3)建议该参数和top_p只设置1个 (4)建议top_p和temperature不要同时更改

top_p

说明: (1)影响输出文本的多样性,取值越大,生成文本的多样性越强 (2)默认0.8,取值范围 [0, 1.0] (3)建议该参数和temperature只设置1个 (4)建议top_p和temperature不要同时更改

penalty_score

通过对已生成的token增加惩罚,减少重复生成的现象。说明: (1)值越大表示惩罚越大 (2)默认1.0,取值范围:[1.0, 2.0]

使用方法:

代码语言:javascript

复制

运行结果:

代码语言:javascript

复制

添加缓存

从之前的文章中我们讲过如何使用缓存以及多种缓存方式,在这里我们使用本地内存缓存,配置缓存后,如果同一个问题被第二次提问,模型可以快速给出答案。

代码语言:javascript

复制

from langchain.cache import InMemoryCache# 启动llm的缓存langchain.llm_cache = InMemoryCache()

由于在自定义LLM时,缓存参数 cache默认为 False,这里我们需要设置为 True。同时我们通过两次执行来看看效果:

代码语言:javascript

复制

llm = ErnieLLm(temperature=0.95, top_p=1.0, cache=True)s = time.perf_counter()# 第一次调用print(llm("给我讲一个笑话"))elapsed = time.perf_counter() - sprint("\033[1m" + f"第一次调用耗时 {elapsed:0.2f} 秒." + "\033[0m")s = time.perf_counter()# 第一次调用print(llm("给我讲一个笑话"))elapsed = time.perf_counter() - sprint("\033[1m" + f"第二次调用耗时 {elapsed:0.2f} 秒." + "\033[0m")

运行结果:

代码语言:javascript

复制

当然可以,这是一个关于两只鸟的笑话:有两只小鸟,一只小鸟问:“哥哥,人们都说你长得好帅,你觉得自己帅吗?”哥哥小鸟羞涩地回答:“不,我不觉得自己帅,我只是很可爱。”而第二只小鸟打断了他:“哥呀,人家说的是你旁边的蝴蝶卷毛哈。”第一次调用耗时 2.37.当然可以,这是一个关于两只鸟的笑话:有两只小鸟,一只小鸟问:“哥哥,人们都说你长得好帅,你觉得自己帅吗?”哥哥小鸟羞涩地回答:“不,我不觉得自己帅,我只是很可爱。”而第二只小鸟打断了他:“哥呀,人家说的是你旁边的蝴蝶卷毛哈。”第二次调用耗时 0.00.

可以看到第二次请求所用时间近乎为0(可能是纳秒级别)。

小结

本文主要介绍了在LangChain平台上自定义LLM的步骤和参数,并以文心一言的ERNIE-Bot-turbo模型为例进行了详细说明。文章首先介绍了自定义LLM需要实现的必要函数,包括_call函数和_identifying_params函数。然后,通过导入dotenv模块和配置环境变量,示例代码演示了如何加载配置文件并调用自定义LLM。接下来,文章介绍了LLM的一些关键参数,如temperaturetop_ppenalty_score,并展示了如何根据需要调整这些参数来优化模型的回答结果。最后,文章提到了使用缓存的方法,通过启动LLM的缓存来加速模型的响应速度,并通过两次调用的结果展示了缓存的效果。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/27546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在 Vue 3 中使用 vue3-print-nb 实现灵活的前端打印

你好,我是小白Coding日志,一个热爱技术的程序员。在这里,我分享自己在编程和技术世界中的学习心得和体会。希望我的文章能够给你带来一些灵感和帮助。欢迎来到我的博客,一起在技术的世界里探索前行吧! 前言 在前端开…

Vue38-组件的几个注意点

一、组件回顾 1-1、创建组件 1-2、注册组件 1-3、使用组件 二、注意点:组件名 2-1、组件名一个单词:纯小写,或者,首字母大写 2-2、多个单词: 1、xx-bbbb 2、AaaBbbb:每个单词的首字母都大写 前提&…

【NUJ PA2】Read a Makefile

这里是NJU的PA2.2里面要求读懂的Makefile,是abstract-machine的。这里会放一些与读懂这个Makefile有关的知识。 下面是用ChatGPT解释的代码。只做大致的了解,写Makefile的时候还是要具体去看官方手册。 官方手册:make.pdf (gnu.org) # Makef…

Json-server 的使用教程

目录 前言一、简介二、安装与配置1. 安装 node-js2. npm 镜像设置3. 安装 json-server 三、使用1. 创建本地数据源2. 启动 Json Server3. 操作数据(1)查询数据(2)新增数据(3)修改数据(4&#xf…

RTOS笔记--资源管理

资源管理 资源管理,其实就是前面介绍过的通知方式中的队列信号量互斥量等是如何访问临界资源的,如何做到完全互斥。 在之前举过一个例子:当我们使用全局变量来进行互斥操作时,有可能在改写全局变量时被切换使得不再互斥&#xff0…

【SpringBoot】深入分析 SpringApplication 源码:彻底理解 SpringBoot 启动流程

在黄昏的余晖里,梦境渐浓,如烟如雾。心随星辰,徜徉远方,岁月静好,愿如此刻般绵长。 文章目录 前言一、SpringBoot 应用二、SpringApplication2.1 SpringApplication 中的属性2.2 SpringApplication 的构造器2.3 Sprin…

【Linux】基础IO——文件描述符,重定向,FILE

话接上篇: 1.文件描述符fd 磁盘文件 VS 内存文件? 当文件存储在磁盘当中时,我们将其称之为磁盘文件,而当磁盘文件被加载到内存当中后,我们将加载到内存当中的文件称之为内存文件。磁盘文件和内存文件之间的关系就像程…

JVM 三色标记算法

三色标记算法核心原理 三色标记算法是一种JVM的垃圾标记算法,CMS/G1垃圾回收器就是使用的这种算法,它可以让JVM在不发生或者尽可能短的发生STW(Stop The World)的情况下进行垃圾的标记和清除。 顾名思义,三色标记算法…

实现JWT认证与授权的Spring Boot项目详解

我们将详细介绍如何使用JWT(JSON Web Tokens)结合Spring Boot框架实现用户认证和授权系统。此方案将包括用户注册、登录以及通过JWT令牌进行后续请求的身份验证过程。我们将从引入必要的依赖开始,然后逐步构建项目的各个部分,包括…

精品丨PowerBI迁移到SSAS

业务场景: 企业初期在进行 BI 可视化路线的时候,往往不会选择方案较为完整的SSAS,而是会选择轻量的 PowerBI 方案,究其根本还是软件成本的问题。 但是随着模型越来越臃肿,维护成本越来越高,有很多模型需要进…

Java面向对象-抽象类和抽象方法

Java面向对象-抽象类和抽象方法 1、代码案例展示2、抽象类和抽象方法的关系: 1、代码案例展示 1、在一个类中会有一类方法,无需重写,直接使用 2、在一个类中会有一类方法,会对这个方法进行重写 3、一个方法的方法体去掉&#xff…

【文心智能体分享】日记周报助手

引言 在繁忙的实习生活中,你是否曾为如何整理日常的工作日志、周报、月报而烦恼?现在,我们为你带来了一个全新的智能体——“日记周报助手”,它将成为你实习过程中的得力助手,帮你轻松整理实习日志,让你的…

mysql 中的锁

一.锁的介绍 锁是计算机协调多个进程或线程并发访问某一资源的机制,在数据库中,除了传统的计算资源(cpu,ram,i/o)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性…

初见 Rollup 的十大常见问题

文章目录 初见 Rollup 的十大常见问题1. 超神奇的 Rollup 英文解释!2. 为什么 ESM 要比 CommonJS 要好呢?3. 什么是 tree-shaking ?4. 如何使用 Rollup 处理 CommonJS?5. 为什么 node-resolve 不是一个内置功能?6. 为什么在进行代…

如何警用root用户登录ssh

使用tail指令,可以动态查看日志信息。 (tail -f /var/log/secure或messages) 使用>符号,可以清空日志内容,不删除文件本身。 禁用root用户为以下步骤: 首先使用useradd创建用户(可以修改为其…

STM32HAL-最简单的时间片论法

目录 概述 一、开发环境 二、STM32CubeMx配置 三、编码 四、运行结果 五、总结 概述 本文章使用最简单的写法时间片论法框架,非常适合移植各类型单片机,特别是资源少的芯片上。接下来将在stm32单片机上实现,只需占用1个定时器作为tick即可。(按键框架+时间片论法)…

【数据结构之B树的讲解】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

【乐吾乐2D可视化组态编辑器】开关、阀门、报警状态切换

开关状态 开关的断开与闭合:将电力组件的“开”与“关”2个组件重叠在一起,右键选择“组合为状态”,属性面板中就可以任意切换状态。 视频教程:开关阀门多状态控制 乐吾乐2D可视化组态编辑器地址:https://2d.le5le.co…

【python】python指南(三):使用正则表达式re提取文本中的http链接

一、引言 对于算法工程师来说,语言从来都不是关键,关键是快速学习以及解决问题的能力。大学的时候参加ACM/ICPC一直使用的是C语言,实习的时候做一个算法策略后台用的是php,毕业后做策略算法开发,因为要用spark&#x…

js编程环境配置-vscode

1、安装Node.js 官网下载 选择适合你Windows系统架构(32位或64位)的安装包。windows系统选择“Windows Installer (.msi)”或“Windows Binary (.exe)”进行下载。 双击下载的.msi或.exe文件进行安装。 在cmd中输入node --version和npm --version&…