【简单介绍】
使用Python将YOLOv10模型从PyTorch格式(.pt)转换为TensorRT格式,并通过封装成类来实现目标检测加速任务,是一个高效且实用的流程。以下是该过程的简要介绍:
- 模型转换:
- 利用官方提供导出命令,将训练好的YOLOv10模型(.pt格式)转换为tensorrt模型。
- 利用NVIDIA的TensorRT框架,将ONNX模型转换为TensorRT引擎,以优化在NVIDIA GPU上的运行速度。
- TensorRT模型封装:
- 创建一个Python类,该类负责加载TensorRT引擎、处理输入数据、执行推理以及解析输出结果。
- 封装类中包含模型加载、预处理、后处理以及推理执行等关键步骤,提供简洁的API供用户调用。
- 目标检测加速:
- TensorRT通过算子融合、量化、内核自动调整等技术,显著减少数据流通次数和显存使用,最大化并行操作,从而加速目标检测任务。
- YOLOv10模型本身的轻量级设计和高效性能,在TensorRT的加持下,能够实现更快的推理速度和更高的检测精度。
通过上述流程,我们可以将YOLOv10模型高效地部署到NVIDIA GPU上,实现快速且准确的目标检测任务。
【实现流程】
1、首先安装好anaconda环境然后开始安装yolov10环境
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
2、下载好tensorrt8.6.1.6版本安装包进行安装,并将tensorrt安装到yolov10环境中
3、导出模型
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine
您也可以直接使用我封装的转换接口:
#pt转tensorrtdetector = Yolov10Detector(weights='weights/yolov10n.pt')detector.pt_to_engine()
转换注意:由于tensorrt依赖于硬件,也就是不同电脑可能无法使用同一个tensorrt模型,因此需要在自己电脑本地首先转换pytorch模型为tensorrt模型,而不是直接拿别人转换好的tensorrt模型,否则可能会出现检测不到目标或者无法加载模型情况。
【封装调用】
推理图片:
#推理图片detector = Yolov10Detector(weights='weights/yolov10n.engine')frame = cv2.imread('E:\person.jpg')result_list = detector.inference_image(frame)result_img = detector.draw_image(result_list, frame)cv2.imshow('frame', result_img)cv2.waitKey(0)
推理视频:
#推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_video(r'D:\car.mp4')
推理摄像头:
#推理视频detector = Yolov10Detector(weights='weights/yolov10n.engine')detector.start_camera()
【效果展示】
【视频演示】
使用python转换pt并部署yolov10的tensorrt模型_哔哩哔哩_bilibili测试环境:torch==2.0.1tensorrt==8.6.1.6cuda==11.7.1cudnn==8.8.0更多信息请访问博文:, 视频播放量 5、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:ChatTTS增强版V2,批量导出srt,语速控制,情感控制,支持朗读数字,问题修复,使用纯opencv部署yolov8目标检测模型onnx,yolov8 TensorRT C++ C#部署,yolox+deepsort+pyqt5实现目标追踪结果演示,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,使用C++部署yolov8的onnx和bytetrack实现目标追踪,[目标检测][数据集]张贴小广告数据集VOC-1725张介绍,基于yolov6+botsort+pyqt5实现的目标追踪视频演示,基于gradio开发的通用目标检测UI设计,yolox+bytetrack+pyqt5实现目标追踪结果演示https://www.bilibili.com/video/BV1Fy41187aC/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee
【测试环境】
torch==2.0.1 tensorrt==8.6.1.6 cuda==11.7.1 cudnn==8.8.0
【源码下载】 https://download.csdn.net/download/FL1623863129/89426162