如何在隔离环境中设置 LocalAI 以实现 GPU 驱动的文本嵌入

作者:来自 Elastic Valeriy Khakhutskyy

你是否想在 Elasticsearch 向量数据库之上构建 RAG 应用程序?你是否需要对大量数据使用语义搜索?你是否需要在隔离环境中本地运行?本文将向你展示如何操作。

Elasticsearch 提供了多种方法来为你的数据创建嵌入以进行对称搜索。最流行的方法之一是将 Elasticsearch open inference API 与 OpenAI、Cohere 或 Hugging Face 模型结合使用。这些平台支持许多可以在 GPU 上运行的大型、强大的嵌入模型。但是,第三方嵌入服务不适用于隔离系统,或者对有隐私问题和监管要求的客户不开放。

或者,你可以使用 ELSER 和 E5 在本地计算嵌入。这些嵌入模型在 CPU 上运行,并针对速度和内存使用进行了优化。它们也适用于隔离系统,可以在云中使用。但是,这些模型的性能不如在 GPU 上运行的模型。

如果你可以在本地计算数据的嵌入,那不是很棒吗?使用 LocalAI,你就可以做到这一点。LocalAI 是一个与 OpenAI API 兼容的免费开源推理服务器。它支持使用多个后端进行模型推理,包括用于嵌入的 Sentence Transformers 和用于文本生成的 llama.cpp。LocalAI 还支持 GPU 加速,因此你可以更快地计算嵌入。

本文将向你展示如何使用 LocalAI 计算数据的嵌入。我们将引导你完成设置 LocalAI、配置它以计算数据的嵌入以及运行它以生成嵌入的过程。你可以在笔记本电脑、隔离系统或任何需要计算嵌入的地方运行它。

我引起了你的兴趣吗?让我们开始吧!

步骤 1:使用 docker-compose 设置 LocalAI

要开始使用 LocalAI,你需要在计算机上安装 Docker 和 docker-compose。根据你的操作系统,你可能还需要安装 NVIDIA Container Toolkit 以在 Docker 容器内提供 GPU 支持。

旧版本不支持 NVIDIA 运行时指令,因此请确保安装了最新版本的 docker-compose:

sudo curl -L https://github.com/docker/compose/releases/download/v2.26.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

检查 docker-compose 的版本:

docker-compose --version

你需要使用以下 docker-compose.yaml 配置文件

# file: docker-compose.yaml
services:localai:image: localai/localai:latest-aio-gpu-nvidia-cuda-12container_name: localaienvironment:- MODELS_PATH=/models- THREADS=8ports:- "8080:8080"volumes:- $HOME/models:/modelstty: truestdin_open: truerestart: alwaysdeploy:resources:reservations:devices:- driver: nvidiacount: allcapabilities: [gpu]

注意

  1. 我们将 $HOME/models 目录挂载到容器内的 /models 目录。这是模型的存储位置。你需要调整要存储模型的目录的路径。
  2. 我们指定了用于推理的线程数和要使用的 GPU 数量。你可以根据硬件配置调整这些值。

第 2 步:配置 LocalAI 以使用 Sentence Transformers 模型

在本教程中,我们将使用 mixedbread-ai/mxbai-embed-large-v1,它目前在 MTEB 排行榜上排名第 4。但是,任何可以由 sentence-transformers 库加载的嵌入模型都可以以相同的方式工作。

创建目录 $HOME/models 和配置文件 $HOME/models/mxbai-embed-large-v1.yaml,内容如下:

# file: mxbai-embed-large-v1.yaml
name: mxbai-embed-large-v1 
backend: sentencetransformers
embeddings: true
parameters:model: mixedbread-ai/mxbai-embed-large-v1

步骤 3:启动 LocalAI 服务器

通过运行以下命令以分离模式启动 Docker 容器

docker-compose up -d

从你的 $HOME 目录。

通过运行 docker-compose ps 验证容器是否已正确启动。检查 localai 容器是否处于启动状态。

你应该看到类似于以下内容的输出:

~$ docker-compose ps
WARN[0000] /home/valeriy/docker-compose.yaml: `version` is obsolete 
NAME      IMAGE                                           COMMAND                  SERVICE   CREATED              STATUS                                 PORTS
localai   localai/localai:latest-aio-gpu-nvidia-cuda-12   "/aio/entrypoint.sh"     localai   About a minute ago   Up About a minute (health: starting)   0.0.0.0:8080->8080/tcp

如果出现问题,请检查日志。你还可以使用日志来验证 localai 是否可以看到 GPU。运行

docker logs localai

应该可以看到这样的信息:

$ docker logs localai
===> LocalAI All-in-One (AIO) container starting...
NVIDIA GPU detected
Thu Mar 28 11:15:41 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.86.10              Driver Version: 535.86.10    CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       Off | 00000000:00:04.0 Off |                    0 |
| N/A   59C    P0              29W /  70W |      2MiB / 15360MiB |      6%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+
NVIDIA GPU detected. Attempting to find memory size...
Total GPU Memory: 15360 MiB

最后,你可以通过查询已安装模型的列表来验证推理服务器是否正常工作:

curl -k http://localhost:8080/v1/models

应该产生如下输出:

{"object":"list","data":[{"id":"tts-1","object":"model"},{"id":"text-embedding-ada-002","object":"model"},{"id":"gpt-4","object":"model"},{"id":"whisper-1","object":"model"},{"id":"stablediffusion","object":"model"},{"id":"gpt-4-vision-preview","object":"model"},{"id":"MODEL_CARD","object":"model"},{"id":"llava-v1.6-7b-mmproj-f16.gguf","object":"model"},{"id":"voice-en-us-amy-low.tar.gz","object":"model"}]}

步骤 4:创建 Elasticsearch _inference 服务

我们已经创建并配置了 LocalAI 推理服务器。由于它是 OpenAI 推理服务器的直接替代品,我们可以在 Elasticsearch 中创建一个新的 openai 推理服务。Elasticsearch 8.14 中实现了对此功能的支持。

要创建新的推理服务,请在 Kibana 中打开 Dev Tools 并运行以下命令:

PUT _inference/text_embedding/mxbai-embed-large-v1
{"service": "openai","service_settings": {"model_id": "mxbai-embed-large-v1","url": "http://localhost:8080/embeddings","api_key": "ignored"}
}

注意

  1. api_key 参数是 openai 服务所必需的,必须设置,但具体值对我们的 LocalAI 服务并不重要。
  2. 对于大型模型,如果模型首次下载到 LocalAI 服务器需要很长时间,则 PUT 请求最初可能会超时。只需在短时间内重试 PUT 请求即可。

最后,你可以验证推理服务是否正常工作:

POST _inference/text_embedding/mxbai-embed-large-v1
{"input": "It takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"
}

应该产生如下输出:

{"text_embedding": [{"embedding": [-0.028375082,0.6544269,0.1583663,0.88167363,0.5215657,0.05415681,0.62085253,0.069351405,0.29407632,0.51018727,0.8183201,...]}]
}

结论

按照本文中的步骤,你可以设置 LocalAI,使用 GPU 加速计算数据的嵌入,而无需依赖第三方推理服务。借助 LocalAI,在隔离环境中或有隐私问题的 Elasticsearch 用户可以利用世界一流的向量数据库来开发他们的 RAG 应用程序,而无需牺牲计算性能或选择最适合其需求的 AI 模型的能力。

立即尝试使用 Elastic Stack 构建你自己的 RAG 应用程序:在云端、隔离环境中或在你的笔记本电脑上!

准备好自己尝试了吗?开始免费试用。
希望将 RAG 构建到你的应用程序中?想尝试使用矢量数据库的不同 LLM 吗?
查看我们在 Github 上为 LangChain、Cohere 等提供的示例笔记本,并立即加入 Elasticsearch Relevance Engine 培训。

原文:LocalAI for GPU-Powered Text Embeddings in Air-Gapped Environments — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Laravel学习-控制器

一. 创建创建控制器的命令 php artisan make:controller TestController 二. 单行为控制器 意思是,在定义路由时不用定义指定方法了,他会自己找默认的方法 php artisan make:controller showProfile --invokableRoute::get(profile, 类名的命名空间方…

多曝光融合算法(三)cv2.createAlignMTB()多曝光图像融合的像素匹配问题

文章目录 1.cv2.createAlignMTB() 主要是计算2张图像的位移,假设位移移动不大2.多曝光图像的aline算法:median thresold bitmap原理讲解3.图像拼接算法stitch4.多曝光融合工具箱 1.cv2.createAlignMTB() 主要是计算2张图像的位移,假设位移移动…

Python中猴子补丁是什么,如何使用

1、猴子补丁奇遇记 🐒 在Python的世界深处,隐藏着一种神秘而又强大的技巧——猴子补丁(Monkey Patching)。这是一项允许你在程序运行时动态修改对象(如模块、类或函数)的行为的技术。它得名于其“快速修补…

.net后端程序发布到nignx上,通过nginx访问

后端端口是:5009,ngixn端口5001 ,域名是 www.ckdq.site server { listen 5001; #server_name localhost; server_name www.ckdq.site; location / { proxy_pass http://localhost:5009; proxy_http_version 1.1; proxy_set_header Upgrade…

问题排查: Goalng Defer 带来的性能损耗

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 文章目录 引言问题背景结论 引言 性能优化之路道阻且长,因为脱敏规定,…

vite常识性报错解决方案

1.导入路径不能以“.ts”扩展名结束。考虑改为导入“xxx.js” 原因:当你尝试从一个以 .ts 结尾的路径导入文件时,ESLint 可能会报告这个错误,因为它期望导入的是 JavaScript 文件(.js 或 .jsx)而不是 TypeScript 文件&…

coap-emqx:使用libcoap与emqx通信

# emqx开启CoAP网关 请参考【https://blog.csdn.net/chenhz2284/article/details/139562749?spm1001.2014.3001.5502】 # 写一个emqx的客户端程序&#xff0c;不断地往topic【server/1】发消息 【pom.xml】 <dependency><groupId>org.springframework.boot<…

速盾:高防 CC CDN 的优势剖析

在当今数字化的世界中&#xff0c;网络安全和性能优化至关重要。高防 CC CDN 作为一种先进的技术组合&#xff0c;展现出了诸多显著的优势。 首先&#xff0c;高防 CC 部分能够提供强大的抵御 CC 攻击的能力。CC 攻击往往会造成服务器资源的大量消耗&#xff0c;导致正常服务受…

雪花雪花雪花

/* * Project: 0x14_Hash * File Created:Monday, January 18th 2021, 10:21:24 am * Author: Bug-Free * Problem:AcWing 137. 雪花雪花雪花 */ #include <cstdio> #include <cstring> #include <iostream> #include <vector> #define ll long …

开源与新质生产力

在这个信息技术迅猛发展的时代&#xff0c;全球范围内的产业都在经历着深刻的变革。在这样的背景下&#xff0c;“新质生产力”的概念引起了广泛的讨论。无论是已经成为或正努力转型成为新质生产力的企业&#xff0c;都在寻求新的增长动力和竞争优势。作为一名长期从事开源领域…

JavaScript 编程语言【 数据类型】日期和时间

文章目录 日期和时间创建访问日期组件设置日期组件自动校准&#xff08;Autocorrection&#xff09;日期转化为数字&#xff0c;日期差值Date.now()基准测试&#xff08;Benchmarking&#xff09;对字符串调用 Date.parse总结✅任务创建日期显示星期数欧洲的星期表示方法许多天…

数据交换平台_05_ 监控和管理消息队列

数据交换平台_05_ 监控和管理消息队列 目录概述需求:设计思路实现思路分析1.监控和管理消息拓展实现参考资料和推荐阅读Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,…

哈希算法实现

哈希算法概述 哈希算法(Hashing Algorithm)是一种将输入数据映射到固定大小的哈希值的算法,用于高效的查找和插入操作。哈希表(Hash Table)是哈希算法的典型应用,通过哈希函数将键映射到表中的索引位置,从而实现快速的数据存取。 以下是哈希表的一个简单实现,以及如何使…

Linux用户和用户组的管理

目录 前言一、系统环境二、Linux用户组的管理2.1 新增用户组2.2 删除用户组2.3 修改用户组2.4 查看用户组 三、Linux用户的管理3.1 新增用户3.2 删除用户3.3 修改用户3.4 查看用户3.5 用户口令&#xff08;密码&#xff09;的管理 总结 前言 本篇文章介绍如何在Linux系统上实现…

OrangePi Kunpeng Pro深度评测:性能与体验的完美融合

文章目录 一、引言二、硬件开箱与介绍1.硬件清单2.硬件介绍 三、软件介绍四、性能测试1. 功率测试2. cpu测试2.1 单线程cpu测试2.2 多线程cpu测试 五、实际开发体验1. 搭建API服务器2. ONNX推理测试3. 在线推理平台 五、测评总结1. 能与硬件配置2. 系统与软件3. 实际开发体验个…

jQuery:一站式指南

目录 jQuery&#xff1a;一站式指南前言1. jQuery简介1.1 jQuery的历史1.2 jQuery的安装 2. jQuery的核心概念2.1 选择器2.2 操作DOM2.2.1 内容操作2.2.2 属性操作2.2.3 CSS操作2.2.4 DOM结构操作 2.3 事件处理2.3.1 绑定事件2.3.2 事件委托2.3.3 解绑事件 3. jQuery的动画与效…

Unity物体材质属性Offset动态偏移

Unity物体材质属性Offset动态偏移 MeshRenderer mr;float offset;public float scrollSpeed 0.5F;private void Start(){mr GetComponent<MeshRenderer>();}void Update(){offset -Time.time * scrollSpeed;mr.material.mainTextureOffset new Vector2(0, -offset);}…

探索智慧商场的功能架构与应用

在数字化和智能化的浪潮下&#xff0c;智慧商场已经成为零售业的重要发展方向之一。智慧商场系统的功能架构设计与应用&#xff0c;结合了现代信息技术和零售业的实际需求&#xff0c;为商场的管理和运营提供了全新的解决方案。本文将深入探讨智慧商场的功能架构与应用&#xf…

SpringAOP-代理方式-Cglib动态代理

文章目录 cglib动态代理 cglib是基于继承的方式实现的 是继承目标类从而产生代理类 springaop底层使用的就是cglib的动态代理 package com.itheima.cjlibproxy;import net.sf.cglib.proxy.Callback; import net.sf.cglib.proxy.Enhancer; import net.sf.cglib.proxy.MethodI…

matlab---app

一 基础 标签和信号灯没有回调函数 clc,clear,close all %清理命令区、工作区&#xff0c;关闭显示图形 warning off %消除警告 feature jit off %加速代码运行 ysw{i}i %循环赋值 celldisp(ysw) %显示元胞数组ysw.y1{1}[1,2] …