机器学习--损失函数

损失函数(Loss Function),也称为代价函数(Cost Function)或误差函数(Error Function),是机器学习和统计学中的一个重要概念。它用于量化模型预测值与真实值之间的差异。损失函数的值越小,表示模型的预测越准确。
在这里插入图片描述

损失函数的定义

损失函数根据具体的任务和目标会有所不同。常见的损失函数包括:

  1. 均方误差(Mean Squared Error, MSE)
    适用于回归问题,计算预测值与真实值之间的平方差的平均值。
    M S E {MSE} MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 n1i=1n(yiy^i)2

    其中, ( y i ) ( y_i ) (yi)是真实值, ( y ^ i ) ( \hat{y}_i) (y^i)是预测值, ( n ) ( n ) (n) 是样本数量。

  2. 均方根误差(Root Mean Squared Error, RMSE)
    MSE 的平方根,用于回归问题,更直观地反映误差的尺度。
    RMSE \ \text{RMSE}  RMSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} n1i=1n(yiy^i)2

  3. 平均绝对误差(Mean Absolute Error, MAE)
    计算预测值与真实值之间绝对差的平均值。

    MAE = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ \text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1i=1nyiy^i

  4. 交叉熵损失(Cross-Entropy Loss)
    适用于分类问题,特别是二分类和多分类问题
    二分类交叉熵损失:
    Binary Cross-Entropy = − 1 n ∑ i = 1 n [ y i log ⁡ ( y ^ i ) + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ] \text{Binary Cross-Entropy} = - \frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] Binary Cross-Entropy=n1i=1n[yilog(y^i)+(1yi)log(1y^i)]
    多分类交叉熵损失:
    Categorical Cross-Entropy = − 1 n ∑ i = 1 n ∑ c = 1 C y i , c log ⁡ ( y ^ i , c ) \text{Categorical Cross-Entropy} = - \frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c}) Categorical Cross-Entropy=n1i=1nc=1Cyi,clog(y^i,c)
    其中, ( C ) (C) (C)是类别数,(( y i , c y_{i,c} yi,c) 是样本 ( i ) 在类别 ( c ) 的真实标签(通常为0或1), ( y ^ i , c ) ( \hat{y}_{i,c} ) (y^i,c) 是预测概率。

如何定义合理的损失函数

定义合理的损失函数需要考虑以下几个方面:

  1. 任务目标:根据具体任务选择合适的损失函数。例如,回归任务通常使用MSE或MAE分类任务则使用交叉熵损失

  2. 误差特性:考虑误差的性质和分布。MSE 对异常值(outliers)较为敏感,因为平方误差会放大大误差值的影响,而MAE 对异常值较为鲁棒。

  3. 模型的可解释性:选择容易解释和调试的损失函数。MAE 的物理意义更容易理解,因为它直接反映了平均预测误差的大小。

  4. 优化难度:选择优化过程中梯度计算和收敛性较好的损失函数。例如,MSE 的梯度是线性的,优化相对简单,而有些复杂损失函数可能导致优化过程中的梯度不稳定。

  5. 应用场景:根据具体应用场景选择损失函数。例如,在推荐系统中,可以使用带权重的损失函数,来更关注某些重要用户或物品的预测准确性。

举例说明

例子1:房价预测(回归问题)

假设我们在做房价预测,可以选择MSE作为损失函数:
MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1n(yiy^i)2
选择MSE是因为它在回归问题中广泛使用,计算简单且误差放大效果有助于模型尽量减少大误差。

例子2:图片分类(分类问题)

假设我们在做手写数字识别,可以选择多分类交叉熵损失:
Categorical Cross-Entropy = − 1 n ∑ i = 1 n ∑ c = 1 C y i , c log ⁡ ( y ^ i , c ) \text{Categorical Cross-Entropy} = - \frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c}) Categorical Cross-Entropy=n1i=1nc=1Cyi,clog(y^i,c)
选择交叉熵损失是因为它能够很好地处理分类概率分布,帮助模型最大化正确分类的概率。

总结

损失函数是评估和优化机器学习模型的重要工具。定义合理的损失函数需要结合具体任务、误差特性、模型的可解释性、优化难度和应用场景等多个因素。选择合适的损失函数能够帮助我们构建更准确和有效的机器学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎么换自己手机的ip地址

在互联网时代,IP地址已经成为了我们数字身份的一部分。无论是浏览网页、下载文件还是进行在线交流,我们的IP地址都在默默发挥着作用。然而,有时出于安全或隐私保护的考虑,我们可能需要更换手机的IP地址。那么,如何轻松…

C#操作MySQL从入门到精通(14)——汇总数据

前言 我们有时候需要对数据库查询的值进行一些处理,比如求平均值等操作,本文就是详细讲解这些用法,本文测试使用的数据库数据如下: 1、求平均值 求所有student_age 列的平均值 string sql = string.Empty; if (radioButton_AVG.Checked) {sql = “select AVG( student_…

Day47 代码随想录打卡|二叉树篇---最大二叉树

题目(leecode T654): 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 …

htb-linux-9-sense

nmap web渗透 目录爆破 靶机非常慢 system-users.txt ####Support ticket###Please create the following userusername: Rohit password: company defaults尝试登陆 现在我们知道了一个登陆的用户名,密码据称是公司默认密码。谷歌这个公司名称是pfsense现在用r…

C语言如何判断⽂件的结束?

一、问题 在⽂件中查找匹配的信息时,需要遍历⽂件中的数据信息。在遍历的过程中,如何判断⽂件的指针已经到了⽂件的结尾呢? 二、解答 1. 问题解析 在对⽂件的操作函数中,除了存在读写⽂件的函数,还有⽤于测试⽂件流是…

【Tool】Matlab 数据分析可视化

一、问题描述 近期围绕imu总是出现问题,自己整理了一下将数据可视化的工具 二、imu 类 1. 待处理数据格式 # yaw roll pitch time -2.08131 -0.0741765 0.0200713 121.281000000 -2.08724 -0.0745256 0.0197222 121.301000000 -2.093 -0.075747…

对Java中二维数组的深层认识

首先,在JAVA中,二维数组是一种数组的数组。它可以看作是一个矩阵,通常是由于表示二维数据节后,如表格和网格。 1.声明和初始化二维数组 声明 int[][] arr;初始化 int[][] arrnew int[3][4];或者用花括号嵌套 int[][] arr{{1,…

Python一些小操作

矢量图 from matplotlib_inline import backend_inline backend_inline.set_matplotlib_formats(svg)matplotlib中文问题 import matplotlib.pyplot as plt plt.rcParams["font.sans-serif"]["SimHei"] #设置字体 plt.rcParams["axes.unicode_minus…

【LeetCode:312. 戳气球+ 动态规划】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

ChromaDB初探

探索ChromaDB 在当今数据驱动的世界中,随着人工智能和机器学习的广泛应用,如何高效地存储、检索和操作大量向量数据成为了一个关键问题。ChromaDB作为一种强大的向量数据库,正在为解决这一问题提供全新的解决方案。在这篇博客中,…

【机器学习基础】Python编程10:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机…

代码随想录——修建二叉搜素树(Leetcode669)

题目链接 递归 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) {* …

八爪鱼现金流-019-个人对接支付,个人网站支付解决方案

背景: 随着用户量不断增加,服务器成本越来越大。想着实现会员制回点服务器成本。 业务场景分析: 用户在站点上付款 -----> 我监听到付款金额 -----> 给用户开通会员 调研: 支付宝和微信官方支付接口:基本都需…

hustoj二开

目录 1、路径问题2、开发问题&#xff08;1&#xff09;、mysql&#xff08;2&#xff09;、php 啊啊啊啊&#xff01;&#xff01;&#xff01;难崩&#xff1a; 路径问题搞了好长时间才明白了该项目的路径如何设置的 >_< ,&#xff0c;本文就路径问题&#xff0c;前端页…

k8s之deployments相关操作

k8s之deployments相关操作 介绍 官网是这样说明如下&#xff1a; 一个 Deployment 为 Pod 和 ReplicaSet 提供声明式的更新能力。 你负责描述 Deployment 中的目标状态&#xff0c;而 Deployment 控制器&#xff08;Controller&#xff09; 以受控速率更改实际状态&#xf…

操作系统期末复习整理知识点

操作系统的概念&#xff1a;①控制和管理整个计算机系统的硬件和软件资源&#xff0c;并合理地组织调度计算机的工作和资源的分配&#xff1b;②提供给用户和其他软件方便的接口和环境&#xff1b;③是计算机中最基本的系统软件 功能和目标&#xff1a; ①操作系统作为系统资源…

【下篇】从 YOLOv1 到 YOLOv8 的 YOLO 物体检测模型历史

YOLO 型号之所以闻名遐迩,主要有两个原因:其速度和准确性令人印象深刻,而且能够快速、可靠地检测图像中的物体。上回我解释了YoloX, 今天从Yolov6开始。 YOLOv6:面向工业应用的单级物体检测框架 美团视觉人工智能事业部(Meituan Vision AI Department)于 2022 年 9 月在…

超详解——python数字和运算_——小白篇

目录 1.的位运算 2. 常用内置函数/模块 math模块&#xff1a; random模块&#xff1a; decimal模块&#xff1a; 3.内置函数&#xff1a; 总结&#xff1a; 1.的位运算 位运算是对整数在内存中的二进制表示进行操作。Python支持以下常见的位运算符&#xff1a; 按位与&…

C++笔记之一个函数多个返回值的方法、std::pair、std::tuple、std::tie的用法

C++笔记之一个函数多个返回值的方法、std::pair、std::tuple、std::tie的用法 —— 2024-06-08 杭州 code review! 文章目录 C++笔记之一个函数多个返回值的方法、std::pair、std::tuple、std::tie的用法一.从一个函数中获取多个返回值的方法1. 使用结构体或类2. 使用`std::t…