PaddleSpeech MFA:阿米娅中文音色复刻计划

PaddleSpeech:阿米娅中文音色复刻计划

本篇项目是对iterhui大佬项目[PaddleSpeech 原神] 音色克隆之胡桃的复刻,使用的PaddleSpeech的版本较新,也针对新版本的PaddleSpeech做了许多配置之上的更新并加入了自己对语音的对齐、配置、训练其它任何语音音色的模块。

本篇项目旨在利用PaddleSpeech框架实现音色克隆技术,目标是复制并生成游戏《明日方舟》中的干员阿米娅(Amiya)的中文语音音色。

1. 配置 PaddleSpeech 开发环境

安装 PaddleSpeech 并在 PaddleSpeech/examples/other/tts_finetune/tts3 路径下配置 tools,下载预训练模型

In [ ]

# # 配置 PaddleSpeech 开发环境
!git clone https://gitee.com/paddlepaddle/PaddleSpeech.git
%cd /home/aistudio/
%cd PaddleSpeech
!pip install .  --user -i https://mirror.baidu.com/pypi/simple
# # 下载 NLTK
# %cd /home/aistudio
# !wget -P data https://paddlespeech.bj.bcebos.com/Parakeet/tools/nltk_data.tar.gz
# !tar zxvf data/nltk_data.tar.gz

In [ ]

# 查看paddlespeech是否正常安装,如果未安装,重新运行上一单元格。
!pip show paddlespeech

In [ ]

# 安装必要库
!pip install prettytable
!pip install soundfile
!pip install librosa
!pip install paddleaudio==1.0.1
!pip install h5py
!pip install loguru
!pip install python_speech_features
!pip install jsonlines
!pip install kaldiio

In [7]

# 删除软链接
# aistudio会报错: paddlespeech 的 repo中存在失效软链接
# 执行下面这行命令!!
!find -L /home/aistudio -type l -delete

In [ ]

# 配置 MFA & 下载预训练模型
%cd /home/aistudio
!bash env.sh

In [ ]

# 配置 MFA & 下载模型及词典
!mkdir -p tools
%cd tools
# mfa tool
!wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
!tar xvf montreal-forced-aligner_linux.tar.gz
!cp montreal-forced-aligner/lib/libpython3.6m.so.1.0 montreal-forced-aligner/lib/libpython3.6m.so
# pretrained mfa model(预置的对齐模型和词典)
!mkdir -p aligner
%cd aligner
!wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip
!unzip aishell3_model.zip
!wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon
%cd ../../

In [ ]

# 拷贝mfa词典重构模型压缩包到指定目录
!cp /home/aistudio/data/data260888/mandarin_pinyin_g2p.zip -d /home/aistudio/tools/montreal-forced-aligner/pretrained_models/mandarin_pinyin_g2p.zip

2 数据集配置

本项目数据集提供了完整的wav、labelx以及MFA对齐标注文件

如果要自行对齐,请去PaddleSpeech查阅完整资料或参考后面的示例

Finetune your own AM based on FastSpeech2 with multi-speakers dataset.

解压文件中的

音频

work/dataset/阿米娅/wav/xx.wav

和标签

work/dataset/阿米娅/wav/labels.txt

对齐的textgrid

work/dataset/阿米娅/textgrid/newdir/xx.TextGrid

本项目采用阿米娅的声音完成

2.1 解压现有阿米娅音色数据集

In [ ]

%cd /home/aistudio/
!unzip /home/aistudio/data/data260882/dataset.zip -d work/

2.2 新音色数据集制作

制作MFA对齐标注文件

想要复刻自己找的语音音色提前要做的准备:

  1. 准备wav语音文件(建议30个文件以上,每个文件大约几秒的语音)
  2. 准备label.txt文件(该文件每行以“|”分割。左侧中文文字,右侧中文拼音,每个拼音后跟1、2、3、4表示音调,如下图)
  3. 按照以下目录格式存放指定文件:

制作过程:

  1. 使用label.txt文件生成各语音文件的lab文件
  2. 使用wav语音文件及对应lab拼音文件(将所有wav语音文件及对应lab拼音文件放在一个文件夹tmp中使用,注意不包含label.txt文件及其他任何文件)、mfa词典重构模型压缩包生成lexicon/txt字典文件(也可以使用别人上传的比较全的字典文件)
  3. 使用wav语音文件及对应lab拼音文件(将所有wav语音文件及对应lab拼音文件放在一个文件夹tmp中使用,注意不包含label.txt文件及其他任何文件)、lexicon/txt字典文件、mfa对齐模型压缩包生成对应textgrid文件
  4. 整理数据集文件目录,得到最终能直接拿来训练的数据集(下图中的txt文件为lab文件更改拓展名后得到,不确定是否能直接将lab代替txt使用,有兴趣的可以试一下)

最终能直接拿来训练的数据集目录结构: 

In [24]

# 生成lab文件
def txt2lab(txtPath, outPath="/home/aistudio/work/dataset/阿米娅/tmp/"):if not os.path.exists(outPath):os.makedirs(outPath)labelPath = txtPath + "labels.txt"with open(labelPath, "r") as f:lines = f.readlines()for line in lines:line = line.strip()name, pinyin = line.split("|")[0], line.split("|")[1]with open(outPath + name + ".lab", "w") as w:w.write(pinyin)os.system("cp {} {}".format(txtPath + name + ".wav", outPath + name + ".wav"))txt2lab("/home/aistudio/work/dataset/阿米娅/wav/")

In [ ]

%cd /home/aistudio/tools/montreal-forced-aligner/bin/
# # 生成字典1(工具实现)
!mfa_generate_dictionary /home/aistudio/tools/montreal-forced-aligner/pretrained_models/mandarin_pinyin_g2p.zip /home/aistudio/work/dataset/阿米娅/tmp /home/aistudio/work/dataset/阿米娅/a.lexicon# # 生成词典2(手动实现)
# # 代码片段2:生成小字典# #全量字典:拼音->音素
# dictionary = r'D:\download\tmp\dictionary.txt'
# def getDictionary(dictionary = dictionary):
#     """
#         :param dictionary: 字典文件,每一行包含一个拼音及对应的音素,例如 "bao1 b ao1\nbeng1 b e1 ng\n"
#         :return: 字典:key是拼音,value是拼音及对应的音素,例如 key=bao1,value='bao1 b ao1\n'
#     """
#     word2phone = {}
#     with open(dictionary, 'r') as f:
#         line = f.readline()
#         while line:
#             key,value = line.split(' ',1)
#             word2phone[key] = line
#         line = f.readline()
#     return word2phone# #生成对齐的小字典
# def getTinyDictionaryByFile(corpusPath=r'.\data_thchs30\data',outputFile = 'tinyDictionary.txt'):
# """
# inputFilePath:.lab文件。音频文件及对应的拼音文件所在目录,拼音文件一个汉字一个拼音,拼音间空格分隔如“bian4 hua1”。
# outputFile: 当前音频文件对应的所有文字的拼音形成的小字典,如“bao1 b ao1\n”
# """
# dictionary = getDictionary()
# pattern = re.compile(r'(.*)\.lab$') #只从lab文件找所有的拼音
# tinyDict = {}
# notExistsWord = ''
# for root, dirPath, files in os.walk(corpusPath):
# for readfile in files: ##遍历inputFilePath目录下的所有文件
# if pattern.match(readfile) is not None: #找出.lab文件
# with open(root+"\\"+readfile,'r') as rf: #读取出.lab文件中的所有拼音
# line = rf.readline()
# while line:
# wordList = line.split() #读取拼音
# for word in wordList:
# if word in dictionary.keys():
# tinyDict[word] = dictionary[word]
# else:notExistsWord += word + ' ' + root+"\\"+readfile+'\n';
# line = rf.readline()
# with open(outputFile, 'w') as wf:##结果写入outputFile
# for key in tinyDict:
# wf.write(tinyDict[key])
# if notExistsWord !='': print(notExistsWord)

In [ ]

# # 解决mfa tool运行时缺失文件的问题
# 查找libgfortran.so.3
!find / -name libgfortran.so.3
# 添加环境变量(临时添加)
!export LD_LIBRARY_PATH="The path you found":$LD_LIBRARY_PATH
# 如:export LD_LIBRARY_PATH=/home/user/miniconda3/envs/paddle/lib/python3.9/site-packages/paddle/libs/:$LD_LIBRARY_PATH

In [ ]

# 生成textgrid文件
!mfa_align /home/aistudio/work/dataset/阿米娅/tmp /home/aistudio/tools/aligner/simple.lexicon /home/aistudio/tools/aligner/aishell3_model.zip /home/aistudio/work/dataset/阿米娅/textgrid/newdir
%cd /home/aistudio/

2.3 编写执行cmd函数代码

In [31]

import subprocess# 命令行执行函数,可以进入指定路径下执行
def run_cmd(cmd, cwd_path):p = subprocess.Popen(cmd, shell=True, cwd=cwd_path)res = p.wait()print(cmd)print("运行结果:", res)if res == 0:# 运行成功print("运行成功")return Trueelse:# 运行失败print("运行失败")return False

2.4 配置各项参数

In [9]

import os# 试验路径
exp_dir = "/home/aistudio/work/exp"
# 配置试验相关路径信息
cwd_path = "/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3"
# 可以参考 env.sh 文件,查看模型下载信息
pretrained_model_dir = "models/fastspeech2_mix_ckpt_1.2.0"# # 同时上传了 wav+标注文本 以及本地生成的 textgrid 对齐文件
# 输入数据集路径
data_dir = "/home/aistudio/work/dataset/阿米娅/wav"
# 如果上传了 MFA 对齐结果,则使用已经对齐的文件
mfa_dir = "/home/aistudio/work/dataset/阿米娅/textgrid"
new_dir = "/home/aistudio/work/dataset/阿米娅/textgrid/newdir"# 输出文件路径
wav_output_dir = os.path.join(exp_dir, "output")
os.makedirs(wav_output_dir, exist_ok=True)dump_dir = os.path.join(exp_dir, 'dump')
output_dir = os.path.join(exp_dir, 'exp')
lang = "zh"

2.5 检查数据集是否合法

In [10]

# check oov
cmd = f"""python3 local/check_oov.py \--input_dir={data_dir} \--pretrained_model_dir={pretrained_model_dir} \--newdir_name={new_dir} \--lang={lang}
"""

In [11]

# 执行该步骤
run_cmd(cmd, cwd_path)
    python3 local/check_oov.py         --input_dir=/home/aistudio/work/dataset/阿米娅/wav         --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0         --newdir_name=/home/aistudio/work/dataset/阿米娅/textgrid/newdir         --lang=zh运行结果: 0
运行成功
True

2.6 生成 Duration 时长信息

In [12]

cmd = f"""
python3 local/generate_duration.py \--mfa_dir={mfa_dir}
"""

In [9]

!cp -r /home/aistudio/PaddleSpeech/utils /home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/local/

In [ ]

!pip install praatio
!pip install yacs

In [14]

# 执行该步骤
run_cmd(cmd, cwd_path)
python3 local/generate_duration.py     --mfa_dir=/home/aistudio/work/dataset/阿米娅/textgrid运行结果: 0
运行成功
True

2.7 数据预处理

In [15]

cmd = f"""
python3 local/extract_feature.py \--duration_file="./durations.txt" \--input_dir={data_dir} \--dump_dir={dump_dir}\--pretrained_model_dir={pretrained_model_dir}
"""

In [ ]

!pip install inflect

In [ ]

import sys
sys.path.append("/home/aistudio/PaddleSpeech/build/lib")
print(sys.path)

In [66]

import paddlespeech
from paddlespeech.t2s.datasets.data_table import DataTable

In [17]

# 执行该步骤
run_cmd(cmd, cwd_path)
33 1
100%|██████████| 33/33 [00:07<00:00,  4.27it/s]16%|█▌        | 5/32 [00:00<00:00, 49.52it/s]
All frames seems to be unvoiced, this utt will be removed.
Done
100%|██████████| 32/32 [00:00<00:00, 194.00it/s]
100%|██████████| 1/1 [00:00<00:00,  2.89it/s]
100%|██████████| 1/1 [00:00<00:00, 300.04it/s]0%|          | 0/1 [00:00<?, ?it/s]
Done
100%|██████████| 1/1 [00:00<00:00,  3.36it/s]
100%|██████████| 1/1 [00:00<00:00, 327.12it/s]
Donepython3 local/extract_feature.py     --duration_file="./durations.txt"     --input_dir=/home/aistudio/work/dataset/阿米娅/wav     --dump_dir=/home/aistudio/work/exp/dump    --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0运行结果: 0
运行成功
True

2.8 准备微调环境

In [18]

cmd = f"""
python3 local/prepare_env.py \--pretrained_model_dir={pretrained_model_dir} \--output_dir={output_dir}
"""

In [19]

# 执行该步骤
run_cmd(cmd, cwd_path)
python3 local/prepare_env.py     --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0     --output_dir=/home/aistudio/work/exp/exp运行结果: 0
运行成功
True

2.9 微调并训练

不同的数据集是不好给出统一的训练参数,因此在这一步,开发者可以根据自己训练的实际情况调整参数,重要参数说明:

训练轮次: epoch

  1. epoch 决定了训练的轮次,可以结合 VisualDL 服务,在 AIstudio 中查看训练数据是否已经收敛,当数据集数量增加时,预设的训练轮次(100)不一定可以达到收敛状态
  2. 当训练轮次过多(epoch > 200)时,建议新建终端,进入/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3 路径下, 执行 cmd 命令,AIStudio 在打印特别多的训练信息时,会产生错误

配置文件:

/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/conf/finetune.yaml

In [39]

# 将默认的 yaml 拷贝一份到 exp_dir 下,方便修改
import shutil
in_label = "/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/conf/finetune.yaml"
shutil.copy(in_label, exp_dir)
'/home/aistudio/work/exp/finetune.yaml'

In [32]

epoch = 100
config_path = os.path.join(exp_dir, "finetune.yaml")cmd = f"""
python3 local/finetune.py \--pretrained_model_dir={pretrained_model_dir} \--dump_dir={dump_dir} \--output_dir={output_dir} \--ngpu=1 \--epoch={epoch} \--finetune_config={config_path}
"""

In [ ]

!pip install --user paddlepaddle-gpu==2.3.2

In [ ]

# 执行该步骤
# 如果训练轮次过多,则复制上面的cmd到终端中运行
# python3 local/finetune.py --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0 --dump_dir=/home/aistudio/work/exp/dump --output_dir=/home/aistudio/work/exp/exp --ngpu=1 --epoch=250 --finetune_config=/home/aistudio/work/exp/finetune.yaml
run_cmd(cmd, cwd_path)

3 生成音频

输入我们需要生成的文字,即可生成对应的音频文件

3.1 文本输入

In [53]

text_dict = {"0": "博士!早上好!","1":"源石被发现之后,人们发掘出一种通过它来施放一系列令物质改变原有性状的技术,这种技术被称为源石技艺,常被俗称为“法术”。源石技艺所运用的能源,一般被认为来自于源石本身。而人是否能施放法术,以及所能施放法术的形式、强度、效果等,通常受到先天具备的素质、后天对源石技艺的学习能力这两方面因素的制约。"
}

In [54]

# 生成 sentence.txt
text_file = os.path.join(exp_dir, "sentence.txt")
with open(text_file, "w", encoding="utf8") as f:for k,v in sorted(text_dict.items(), key=lambda x:x[0]):f.write(f"{k} {v}\n")

3.2 调训练的模型

In [55]

# 找到最新生成的模型
def find_max_ckpt(model_path):max_ckpt = 0for filename in os.listdir(model_path):if filename.endswith('.pdz'):files = filename[:-4]a1, a2, it = files.split("_")if int(it) > max_ckpt:max_ckpt = int(it)return max_ckpt

3.2 生成语音

In [56]

# 配置一下参数信息
model_path = os.path.join(output_dir, "checkpoints")
ckpt = find_max_ckpt(model_path)cmd = f"""
python3 /home/aistudio/PaddleSpeech/paddlespeech/t2s/exps/fastspeech2/../synthesize_e2e.py \--am=fastspeech2_mix \--am_config=models/fastspeech2_mix_ckpt_1.2.0/default.yaml \--am_ckpt={output_dir}/checkpoints/snapshot_iter_{ckpt}.pdz \--am_stat=models/fastspeech2_mix_ckpt_1.2.0/speech_stats.npy \--voc="hifigan_aishell3" \--voc_config=models/hifigan_aishell3_ckpt_0.2.0/default.yaml \--voc_ckpt=models/hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \--voc_stat=models/hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \--lang=mix \--text={text_file} \--output_dir={wav_output_dir} \--phones_dict={dump_dir}/phone_id_map.txt \--speaker_dict={dump_dir}/speaker_id_map.txt \--spk_id=0 \--ngpu=1
"""

In [ ]

!pip install timer
!pip install opencc==1.1.6

In [ ]

# 由于版本兼容问题,微调训练使用paddlepaddle-gpu==2.3.2,调模型生成语音使用paddlepaddle-gpu==2.6.0
!pip install --user paddlepaddle-gpu==2.6.0

In [ ]

run_cmd(cmd, cwd_path)

3.4 语音展示

In [59]

import IPython.display as ipdipd.Audio(os.path.join(wav_output_dir, "0.wav"))
<IPython.lib.display.Audio object>

In [60]

ipd.Audio(os.path.join(wav_output_dir, "1.wav"))
<IPython.lib.display.Audio object>

In [61]

ipd.Audio("/home/aistudio/work/dataset/阿米娅/wav/3星结束行动.wav")
<IPython.lib.display.Audio object>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24696.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux-常用命令-常用设置

1.帮助类命令 1.man命令-获得帮助信息 man [命令或配置文件]例&#xff1a;查看ls命令的帮助信息 man ls输入 ZZ 退出帮助2.服务管理类命令 1.centos7语法 1.1 临时开关服务命令 开启服务&#xff1a; systemctl start 服务名 关闭服务&#xff1a; systemctl stop 服务…

STM32 printf 重定向到CAN

最近在调试一款电机驱动板 使用的是CAN总线而且板子上只有一个CAN 想移植Easylogger到上面试试easylogger的效果&#xff0c;先实现pritnf的重定向功能来打印输出 只需要添加以下代码即可实现 代码 #include <stdarg.h> uint8_t FDCAN_UserTxBuffer[512]; void FDCAN_p…

小程序 UI 风格魅力非凡

小程序 UI 风格魅力非凡

[创业之路-114] :互联网时代下的扁平化管理趋势与面临的挑战

目录 前言&#xff1a;扁平化管理的时代背景 一、扁平化管理的定义 二、扁平化管理的特点 三、扁平化管理的实施 四、扁平化管理的优势 五、偏平化管理的缺点 六、扁平化管理面临的挑战 七、扁平化管理条件和配套措施 7.1 扁平化管理的条件 7.2 扁平化管理的配套措施…

五分钟上手IoT小程序

五分钟上手IoT小程序 IoT小程序框架搭建开发环境首先安装NodeJs安装NodeJs验证安装成功 安装cnpm 安装VSCode 开发IDE下载开发IDE安装开发IDE安装框架脚手架 下载模拟器创建工程项目应用编译(打包构建) VSCode 开发IDE安装插件通过开发插件创建工程编译工程debug编译编译太慢问…

13、SpringBoot 源码分析 - 自动配置深度分析六

SpringBoot 源码分析 - 自动配置深度分析六 refresh和自动配置大致流程AutoConfigurationImportSelector的fireAutoConfigurationImportEvents通知自动配置导入事件AutoConfigurationGroup的selectImports封装成Entry返回MyAutoConfiguration自动配置类创建META-INF文件夹和文件…

3、前端本地环境搭建

前端本地环境搭建 安装node [node下载地址] https://nodejs.org/en/download/prebuilt-installer 选择LTS的版本进行下载 下载后直接双击点击&#xff0c;选择自己想要安装到的目录一直点下一步即可&#xff08;建议不要安装到c盘&#xff09; 安装完成后配置环境变量&am…

Uber 提升 Presto 集群稳定性的 GC 调优方法

Presto at Uber Uber 利用开源的 Presto 查询各种数据源&#xff0c;无论是流式还是归档数据。Presto 的多功能性赋予我们做出基于数据的明智商业决策的能力。我们在两个地区运行了大约20个 Presto 集群&#xff0c;总共超过10,000个节点。我们有大约12,000个每周活跃用户&…

HIP的应用可移植性

Application portability with HIP — ROCm Blogs (amd.com) 许多科学应用程序在配备AMD的计算平台和超级计算机上运行&#xff0c;包括Frontier&#xff0c;这是世界上第一台Exascale系统。这些来自不同科学领域的应用程序通过使用Heterogeneous-compute Interface for Portab…

Socket编程学习笔记之TCP与UDP

Socket&#xff1a; Socket是什么呢&#xff1f; 是一套用于不同主机间通讯的API&#xff0c;是应用层与TCP/IP协议族通信的中间软件抽象层。 是一组接口。在设计模式中&#xff0c;Socket其实就是一个门面模式&#xff0c;它把复杂的TCP/IP协议族隐藏在Socket接口后面&#…

【Python报错】已解决ModuleNotFoundError: No module named ‘xxx‘ in Jupyter Notebook

解决Python报错&#xff1a;ModuleNotFoundError: No module named ‘xxx’ in Jupyter Notebook 在使用Jupyter Notebook进行数据分析或科学计算时&#xff0c;我们经常需要导入各种Python模块。如果你遇到了ModuleNotFoundError: No module named xxx的错误&#xff0c;这通常…

STM32F103C8T6基于HAL库移植uC/OS-III

文章目录 一、建立STM32CubeMX工程二、移植1、 uC/OS-III源码2、移植过程 三、配置相关代码1、bsp.c和bsp.h2、main.c3、修改启动代码4、修改app_cfg.h文件5、修改includes.h文件6、修改lib_cfg.h文件 四、编译与烧录总结参考资料 学习嵌入式实时操作系统&#xff08;RTOS&…

Django 里实现表格内容上传

先看效果图&#xff1a; 当没有添加数据&#xff0c;就按 提交 键就会出现报错 下面是操作步骤 1. 先在 views.py 文件里做添加 # 在 views.py class AssetModelForm(forms.ModelForm):#newField forms.CharField()class Meta:model models.AssetSet fields [name, pri…

基于zyyo主页与無名の主页合并二改,一款适合新手的个人主页

pengzi主页&#x1f64b; 项目地址 简洁的布局&#xff1a;主页应该有清晰的布局&#xff0c;包括一个简洁的导航菜单和易于浏览的内容区域。避免使用过多的花哨效果&#xff0c;保持页面简洁明了。 个人资料介绍&#xff1a;在主页上展示一段简短的个人介绍&#xff0c;包括…

电机专用32位MCU PY32MD310,Arm® Cortex-M0+内核

PY32MD310是一颗专为电机控制设计的MCU&#xff0c;非常适合用做三相/单相 BLDC/PMSM 的主控芯片。芯片采用了高性能的 32 位 ARM Cortex-M0 内核&#xff0c;QFN32封装。内置最大 64 Kbytes flash 和 8 Kbytes SRAM 存储器&#xff0c;最高48 MHz工作频率&#xff0c;多达 16 …

C++全栈聊天项目(21) 滚动聊天布局设计

滚动聊天布局设计 我们的聊天布局如下图 最外层的是一个chatview&#xff08;黑色&#xff09;&#xff0c; chatview内部在添加一个MainLayout&#xff08;蓝色&#xff09;&#xff0c;MainLayout内部添加一个scrollarea(红色)&#xff0c;scrollarea内部包含一个widget&…

西米支付:刷卡手续费进入高费率时代! 十多家支付机构公布最新收费标准

《非银行支付机构监督管理条例》自5月1日施行以来&#xff0c;越来越多支付机构落实收费透明化。 支付界注意到&#xff0c;日前&#xff0c;拉卡拉、银联商务两家持牌支付公司公布了新的收单业务收费标准。 拉卡拉在其官网公布了最新的“收费项目及收费标准公示”&#xff0…

GSS7000卫星导航模拟器结合RTKLIB 接收NTRIP网络RTCM数据以输出RS232

本文聚焦&#xff0c;使用GSS7000仿真GNSS NTRIP&#xff0c;利用开源工具RTKLIB 作为NTRIP Client 接受GSS7000仿真的RTCM数据&#xff0c; 并通过STRSVR将收到的RTCM数据通过USB-RS232数据线吐出&#xff0c;并转给DUT&#xff0c;让其获得RTK -FIXED 固定解。 废话不多说&a…

独享IP VS 原生IP,二者的区别与定义详解

原生IP&#xff1a;原生IP是指由Internet服务提供商&#xff08;ISP&#xff09;直接分配给用户的IP地址&#xff0c;这些IP地址通常反映了用户的实际地理位置和网络连接。原生IP是用户在其所在地区或国家使用的真实IP地址&#xff0c;与用户的物理位置直接相关。在跨境电商中&…

2024教资认定报名流程,点赞收藏!

2024年要进行教资认定的宝子们提早准备 &#x1f525;教资认定网上报名流程概览 一、进入教资认定网报入口 二、进行实名核验 三、申请网报时间查询 四、个人信息维护 五、认定申请报名 &#x1f525;教资认定所需材料 1⃣️身份证 2⃣️户口本&#xff0f;居住证&#xff0f;学…