【LLM】度小满金融大模型技术创新与应用探索

note

  1. 从通用大模型到金融大模型
  2. 金融大模型的训练技术创新
  3. 金融大模型的评测方法创新
  4. 金融大模型的应用实践创新
  5. 总结:金融大模型迭代路径

一、轩辕大模型

在这里插入图片描述

二、垂直大模型训练

在这里插入图片描述

1. 数据准备

数据质量是模型效果的保障。首先数据要丰富,这是必备的条件。我们在这一环节做了非常多的工作,也设计了一套通用的数据流水线。从文本的抽取到数据的清洗,再到最后做一些人工的校验和评估,不断反复迭代。原始的中文数据,通过篇章级的过滤,一直到最后质量模型的排序,大概可以形成 32% 的中文数据。最后,形成了 10TB 的通用语料,加上 1TB 的金融语料。当然我们还在做更多的数据,特别是一些行业领域内专有数据的清洗。在这里插入图片描述

2. 增量预训练:

在数据准备完之后,就要去做预训练。需要针对中文场景做词表构建,对此,行业内大概有两种解决方案。一种是通过字粒度去扩充,因为汉字只看一个单词的话相对有限,大概数量是 5K 到 8K。另外一种就是很多中文大模型所采用的方法,即大量引入中文词汇,这样词表会比较大。考虑到对原有模型要尽量减少破坏,所以我们最终采用了字粒度扩容的方式,加入了 7K 的中文字符。这使得我们的整个词表大小达到 39K,词表压缩率为 48%。

在预训练阶段词表优化完之后,训练采用的是两阶段的优化方式,使得收敛更加稳定。第一阶段主要还是解决新加词表的泛化能力,我们仅更新模型词表的 embedding 以及解码线性层,使模型能够适应新的词表。在整个过程中,数据分布与原始的数据分布基本是一致的,就是为了保证模型的稳定性。在训练过程中我们发现,通过少量数据,能够使模型的 loss 达到平稳。所以第一阶段只训练了 40B 的 token。第二阶段对模型进行全量的更新,这时会训练大量的中文语料和英文语料。在这一阶段,我们训练了 300B 的 token。

在这里插入图片描述
数据配比直接影响基座模型的训练质量。开始时整体的中英语料是 3 比 1。在英文数据上,一开始仅加入了少量的金融数据。随着整个训练过程的不断优化,金融数据的比例也越来越高。在训练过程中,要保证原有的英文能力。

3. 指令微调

指令微调:SFT 数据的丰富性和多样性直接影响对齐效果。在数据生成上,分为通用数据生成和金融专业领域数据生成。整体配比大概是 4 比 1。我们通过不同方式的自动生成以及人工改写,最后生成一个包含许多种类的 SFT 数据结果。

采用两阶段指令微调,保证通用能力的同时,提升金融问答能力。第一阶段是通过混合微调,用海量开源指令数据,同时加入一些预训练数据,保证其泛化性,并且可以有效减少幻觉问题。第二阶段是通过高质量的指令微调数据,提升整体的对话能力。整体的训练方式与预训练是一致的。
在这里插入图片描述

4. 强化学习对齐

价值对齐:通过强化学习对齐价值偏好
接下来要做的是价值对齐,就是使模型的三观与我们一致,我们使用强化学习技术来对齐价值偏好。首先基于人类反馈做 reward model,这里我们选择 pair wise 的方式,并通过大量的人工标注排序。之后用 PPO 算法进行优化。未来,价值对齐会是做大模型非常核心的一个壁垒。

三、工程能力的优化

在这里插入图片描述

优化:
在这里插入图片描述

四、模型评测

在这里插入图片描述
FinanceIQ评测体系:
在这里插入图片描述

Reference

[1] 度小满金融大模型技术创新与应用探索

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24424.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MeiliSearch-轻量级且美丽的搜索引擎

MeiliSearch-轻量级且美丽的搜索引擎 MeiliSearch 是一个功能强大、快速、开源、易于使用和部署的搜索引擎。它具有以下特点: 支持中文搜索:MeiliSearch 对中文有良好的支持,不需要额外的配置。高度可定制:搜索和索引都可以高度…

UML实现图-组件图

概述 组件图(ComponentDiagram)描述了软件的各种组件和它们之间的依赖关系。组件图中通常包含4种元素:组件、程序、包、任务,各个组件之间还可以相互依赖。 一、组件的表示法 组件是定义了良好接口的物理实现单元,是系统中可替换的物理部件。在一般情…

攻防世界---misc---小小的PDF

1、题目描述,下载附件是一个PDF,打开之后是这样,有两页PDF 2、用winhex分析,没有发现奇怪的地方 3、在kali中binwalk发现有多张照片 4、接着使用foremost将图片分离出来, 5、得到3张图片,打开第3张图片&am…

Android音频架构

Android音频架构 前面《Android音频API》介绍了Android系统提供的四个层面的音频API: Java层MediaRecorder&MediaPlayer系列;Java层AudioTrack&AudioRecorder系列;Jni层opensles;JNI层AAudio(Android O引入&…

探索智慧林业系统的总体架构与应用

背景: 随着人们对森林资源保护和管理的重视,智慧林业系统作为一种新兴的林业管理手段,正在逐渐受到广泛关注和应用。智慧林业系统的总体架构设计与应用,将现代信息技术与林业管理相结合,为森林资源的保护、管理和利用…

注册自定义材质实现qgis里不同比例尺下材质不被拉升的效果

前景提要: 在QGIS里的显示效果,用的是示例的/img/textures/line-interval.png材质图片。 下载示例 git clone https://gitee.com/marsgis/mars3d-vue-example.git 相关效果 比如材质是5像素,在1:100000万比例尺下,线显示的长…

树的重心-java

主要通过深度优先搜索来完成树的重心,其中关于树的重心的定义可以结合文字多加理解。 文章目录 前言☀ 一、树的重心☀ 二、算法思路☀ 1.图用邻接表存储 2.图的遍历 3.算法思路 二、代码如下☀ 1.代码如下: 2.读入数据 3,代码运行结果 总结 前言☀ 主…

电机控制系列模块解析(28)—— 其他功能概述

其他功能概述 软件侧:观测器估计发散保护、时序异常检测 主电路侧:IGBT结温估算、直流母线电容容值估算 电机侧:电机温度估计、轴承异常估计、电机退磁检测 负载侧:负载不平衡检测、掉载检测、负载惯量自适应 上述各项功能&a…

新书推荐:2.2.4 第11练:消息循环

/*------------------------------------------------------------------------ 011 编程达人win32 API每日一练 第11个例子GetMessage.c:消息循环 MSG结构 GetMessage函数 TranslateMessage函数:将虚拟键消息转换为字符消息 DispatchMessage函数…

信息系统项目管理师0148:输出(9项目范围管理—9.3规划范围管理—9.3.3输出)

点击查看专栏目录 文章目录 9.3.3 输出 9.3.3 输出 范围管理计划 范围管理计划是项目管理计划的组成部分,描述将如何定义、制定、监督、控制和确认项 目范围。范围管理计划用于指导如下过程和相关工作: ①制定项目范围说明书;②根据详细项目范…

【机器学习】XGBoost: 强化学习与梯度提升的杰作

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 XGBoost: 强化学习与梯度提升的杰作引言1. XGBoost概览1.1 什么是XGBoost&#…

纷享销客安全体系:安全运维运营

安全运维运营(Security Operations,SecOps)是指在信息安全管理中负责监控、检测、响应和恢复安全事件的一系列运营活动。它旨在保护组织的信息系统和数据免受安全威胁和攻击的损害。 通过有效的安全运维运营,组织可以及时发现和应对安全威胁,减少安全事…

09.2手工制作docker镜像-kod服务

手工制作docker镜像-kod服务 基于centos6.9系统镜像,搭建kod服务,提交镜像 创建并进入容器 添加centos6系统的yum源和epel源 yum源 curl -o /etc/yum.repos.d/CentOS-Base.repo https://www.xmpan.com/Centos-6-Vault-Aliyun.repo epel源 curl -o /e…

定时器的使用和实现

目录 一.定时器Timer类的主要方法 二.定时器Timer类的使用 三.定时器的模拟实现 一.定时器Timer类的主要方法 定时器Timer类在java.util包中。 使用前先进行实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定指定的任务task在指…

python数据分析-心脏瓣膜手术风险分析与预测

研究背景 人的心脏有四个瓣膜,主动脉银、二尖、肺动脉和三尖源 不管是那一个膜发生了病变,都会导致心脏内的血流受到影响,这就是通常所说的心脏期膜病,很多是需要通过手术的方式进行改善的。随着人口老龄化的加剧,,心…

8. 正则表达式

正则表达式 在处理字符串时,需要查找符合某些复杂规则的字符串,正则表达式就是用于描述这些规则的工具 一、正则表达式语法 行定位符:用来描述字符串的边界 -->用来匹配一整行 符号匹配位置^行的开始$行的结尾 ^tm : 可以匹配行 tm equa…

高质量 HarmonyOS 权限管控流程

高质量 HarmonyOS 权限管控流程 在 HarmonyOS 应用开发过程中,往往会涉及到敏感数据和硬件资源的调动和访问,而这部分的调用就会涉及到管控这部分的知识和内容了。我们需要对它有所了解,才可以在应用开发中提高效率和避免踩坑。 权限管控了…

19、Go Gin框架集成Swagger

介绍: Swagger 支持在 Gin 路由中使用一系列注释来描述 API 的各个方面。以下是一些常用的 Swagger 注释属性,这些属性可以在 Gin 路由的注释中使用: Summary: 路由的简短摘要。Description: 路由的详细描述。Tags: 用于对路由进行分类的标…

数据挖掘--数据仓库与联机分析处理

什么是数据仓库 (面集时非) 面向主题的:围绕某一主题来构建集成的:图片文字杂糅在一起时变的:随时间变化的数据非易失的:硬盘存放,不易丢失 操作数据库系统(OLTP)与数据仓库(OLAP…

MySQL将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示

将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示 idname1苹果Apple72Plum6李子3Pineapple8菠萝4Mango5芒果5龙吐珠5Buddha’sHand6Olive9橄榄7Raspberry4树莓8Apricot5杏子9Grapefruit9柚子10火龙果Dragonfruit911倒挂金钟Hanging6LobsterClaw12巨峰葡萄Co…